Strained-Silicon Heterojunction Bipolar Transistor

被引:15
|
作者
Persson, Stefan [1 ]
Fjer, Mouhine [1 ]
Escobedo-Cousin, Enrique [1 ]
Olsen, Sarah H. [1 ]
Malm, Bengt Gunnar [2 ]
Wang, Yong-Bin [2 ]
Hellstrom, Per-Erik [2 ]
Ostling, Mikael [2 ]
O'Neill, Anthony G. [1 ]
机构
[1] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Royal Inst Technol KTH, Sch Informat & Commun Technol, S-16440 Stockholm, Sweden
基金
英国工程与自然科学研究理事会;
关键词
Band-gap engineering; BiCOMS integration; stained-Si heterojunction bipolar transistor (HBT); SIGE HBT; FABRICATION; TECHNOLOGY; VOLTAGE;
D O I
10.1109/TED.2010.2045667
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Experimental and modeling results are reported for high-performance strained-silicon heterojunction bipolar transistors (HBTs), comprising a tensile strained-Si emitter and a compressively strained Si0.7Ge0.3 base on top of a relaxed Si0.85Ge0.15 collector. By using a Si0.85Ge0.15 virtual substrate strain platform, it is possible to utilize a greater difference in energy band gaps between the base and the emitter without strain relaxation of the base layer. This leads to much higher gain, which can be traded off against lower base resistance. There is an improvement in the current gain beta of 27x over a conventional silicon bipolar transistor and 11x over a conventional SiGe HBT, which were processed as reference devices. The gain improvement is largely attributed to the difference in energy band gap between the emitter and the base, but the conduction band offset between the base and the collector is also important for the collector current level.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 50 条
  • [31] HIGH-FREQUENCY PNP ALGAAS/INGAAS HETEROJUNCTION BIPOLAR-TRANSISTOR WITH AN ULTRATHIN STRAINED BASE
    LIU, WU
    HILL, D
    COSTA, D
    HARRIS, JS
    ELECTRONICS LETTERS, 1990, 26 (24) : 2000 - 2002
  • [32] Strained-silicon metrology using a multi-technology optical system
    Pois, H
    Morris, S
    Opsal, J
    Paranjpe, A
    Cody, N
    Landin, T
    Metrology, Inspection, and Process Control for Microlithography XIX, Pts 1-3, 2005, 5752 : 1117 - 1126
  • [33] Oxidation of very low energy nitrogen-implanted strained-silicon
    Kelaidis, N.
    Skarlatos, D.
    Ioannou-Sougleridis, V.
    Tsamis, C.
    Komninou, Ph.
    Kellerman, B.
    Seacrist, M.
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2006, 135 (03): : 199 - 202
  • [34] High-field electron mobility model for strained-silicon devices
    Dhar, Siddhartha
    Kosina, Hans
    Karlowatz, Gerhard
    Ungersboeck, Stephan Enzo
    Grasser, Tibor
    Selberherr, Siegfried
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (12) : 3054 - 3062
  • [35] Cryogenic preamplification of a single-electron-transistor using a silicon-germanium heterojunction-bipolar-transistor
    Curry, M. J.
    England, T. D.
    Bishop, N. C.
    Ten-Eyck, G.
    Wendt, J. R.
    Pluym, T.
    Lilly, M. P.
    Carr, S. M.
    Carroll, M. S.
    APPLIED PHYSICS LETTERS, 2015, 106 (20)
  • [36] SILICON HETEROJUNCTION BIPOLAR POWER TRANSISTOR WITH AN AMORPHOUS SI-B ALLOY EMITTER
    LI, XH
    CARLSSON, JRA
    JOHANSSON, M
    EKSTROM, B
    GONG, SF
    HENTZELL, HTG
    APPLIED PHYSICS LETTERS, 1992, 61 (11) : 1316 - 1318
  • [37] ESD investigation of pn junction diodes in silicon-germanium heterojunction bipolar transistor
    Chou, CH
    Chen, SS
    Tang, TH
    ELECTRONICS LETTERS, 2003, 39 (14) : 1089 - 1091
  • [38] Modeling the temperature-dependent early voltage of a silicon germanium heterojunction bipolar transistor
    Wartenberg, SA
    Westgate, CR
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 1999, 46 (06) : 1207 - 1211
  • [39] High-gain AlGaAs/GaAs heterojunction bipolar transistor grown on silicon substrate
    Liu, William
    Kim, Sam-Dong
    1600, (31):
  • [40] Research on Mextram Model of Germanium Silicon Heterojunction Bipolar Transistor with RF Avalanche Effect
    Liu J.
    Zheng S.-H.
    Liu Y.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (06): : 1493 - 1499