Strained-Silicon Heterojunction Bipolar Transistor

被引:15
|
作者
Persson, Stefan [1 ]
Fjer, Mouhine [1 ]
Escobedo-Cousin, Enrique [1 ]
Olsen, Sarah H. [1 ]
Malm, Bengt Gunnar [2 ]
Wang, Yong-Bin [2 ]
Hellstrom, Per-Erik [2 ]
Ostling, Mikael [2 ]
O'Neill, Anthony G. [1 ]
机构
[1] Newcastle Univ, Sch Elect Elect & Comp Engn, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Royal Inst Technol KTH, Sch Informat & Commun Technol, S-16440 Stockholm, Sweden
基金
英国工程与自然科学研究理事会;
关键词
Band-gap engineering; BiCOMS integration; stained-Si heterojunction bipolar transistor (HBT); SIGE HBT; FABRICATION; TECHNOLOGY; VOLTAGE;
D O I
10.1109/TED.2010.2045667
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Experimental and modeling results are reported for high-performance strained-silicon heterojunction bipolar transistors (HBTs), comprising a tensile strained-Si emitter and a compressively strained Si0.7Ge0.3 base on top of a relaxed Si0.85Ge0.15 collector. By using a Si0.85Ge0.15 virtual substrate strain platform, it is possible to utilize a greater difference in energy band gaps between the base and the emitter without strain relaxation of the base layer. This leads to much higher gain, which can be traded off against lower base resistance. There is an improvement in the current gain beta of 27x over a conventional silicon bipolar transistor and 11x over a conventional SiGe HBT, which were processed as reference devices. The gain improvement is largely attributed to the difference in energy band gap between the emitter and the base, but the conduction band offset between the base and the collector is also important for the collector current level.
引用
收藏
页码:1243 / 1252
页数:10
相关论文
共 50 条
  • [41] Two-dimensional modeling of etched strained-silicon quantum wires
    Curatola, G
    Iannaccone, G
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) : 1251 - 1257
  • [42] Transistor Model Building for a Microwave Power Heterojunction Bipolar Transistor
    Wu, Hai-Feng
    Cheng, Qian-Fu
    Yan, Shu-Xia
    Zhang, Qi-Jun
    Ma, Jian-Guo
    IEEE MICROWAVE MAGAZINE, 2015, 16 (02) : 85 - 92
  • [43] Two-dimensional modeling of etched strained-silicon quantum wires
    Curatola, G.
    Iannaccone, G.
    Journal of Applied Physics, 1600, 95 (03): : 1251 - 1257
  • [44] A COMPOUND EMITTER HETEROJUNCTION BIPOLAR-TRANSISTOR
    CHOR, EF
    PENG, CJ
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 1993, 12 (04) : 319 - 330
  • [45] Collector breakdown in the heterojunction bipolar transistor laser
    Walter, G.
    James, A.
    Holonyak, N., Jr.
    Feng, M.
    Chan, R.
    APPLIED PHYSICS LETTERS, 2006, 88 (23)
  • [46] InAlAsSb/InGaSb double heterojunction bipolar transistor
    Magno, R
    Boos, JB
    Campbell, PM
    Bennett, BR
    Glaser, ER
    Tinkham, BP
    Ancona, MG
    Hobart, KD
    Park, D
    Papanicolaou, NA
    ELECTRONICS LETTERS, 2005, 41 (06) : 370 - 371
  • [47] δ-doping InGaP/GaAs heterojunction bipolar transistor
    Chen, JY
    Cheng, SY
    Chang, WL
    Liu, WC
    MATERIALS CHEMISTRY AND PHYSICS, 1998, 53 (01) : 88 - 91
  • [48] An InP/InGaAs double heterojunction bipolar transistor
    Chen, Yu-Qiu
    Cheng, Shiou-Ying
    2014 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS (EDSSC), 2014,
  • [49] Properties of the GaAs pseudo heterojunction bipolar transistor
    Yarn, KF
    Lew, KL
    Wang, YH
    Houng, MP
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2006, 93 (01) : 19 - 27
  • [50] A FULLY PLANAR HETEROJUNCTION BIPOLAR-TRANSISTOR
    TULLY, JW
    HANT, W
    OBRIEN, BB
    IEEE ELECTRON DEVICE LETTERS, 1986, 7 (11) : 615 - 617