Composite quantile regression estimation for P-GARCH processes

被引:2
|
作者
Zhao Biao [1 ]
Chen Zhao [2 ]
Tao GuiPing [3 ]
Chen Min [4 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
composite quantile regression; periodic GARCH process; strictly periodic stationarity; strong consistency; asymptotic normality;
D O I
10.1007/s11425-015-5115-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic generalized autoregressive conditional heteroskedasticity (P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator. The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions. The proposed methodology is also illustrated by VaR on stock price data.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 50 条
  • [31] Estimation of additive quantile regression
    Holger Dette
    Regine Scheder
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 245 - 265
  • [32] An implementation for regression quantile estimation
    Yee, TW
    COMPSTAT 2002: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2002, : 3 - 14
  • [33] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [34] GARCH copula quantile regression model for risk spillover analysis
    Tian, Maoxi
    Ji, Hao
    FINANCE RESEARCH LETTERS, 2022, 44
  • [35] Value at Risk Forecasting Based on Quantile Regression for GARCH Models
    Lee, Sangyeol
    Noh, Jungsik
    KOREAN JOURNAL OF APPLIED STATISTICS, 2010, 23 (04) : 669 - 681
  • [36] Hybrid quantile estimation for asymmetric power GARCH models
    Wang, Guochang
    Zhu, Ke
    Li, Guodong
    Li, Wai Keung
    JOURNAL OF ECONOMETRICS, 2022, 227 (01) : 264 - 284
  • [37] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [38] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [39] GARCH processes:: structure and estimation
    Berkes, I
    Horváth, L
    Kokoszka, P
    BERNOULLI, 2003, 9 (02) : 201 - 227
  • [40] P-splines quantile regression estimation in varying coefficient models
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    TEST, 2014, 23 (01) : 153 - 194