Composite quantile regression estimation for P-GARCH processes

被引:2
|
作者
Zhao Biao [1 ]
Chen Zhao [2 ]
Tao GuiPing [3 ]
Chen Min [4 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
composite quantile regression; periodic GARCH process; strictly periodic stationarity; strong consistency; asymptotic normality;
D O I
10.1007/s11425-015-5115-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic generalized autoregressive conditional heteroskedasticity (P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator. The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions. The proposed methodology is also illustrated by VaR on stock price data.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 50 条
  • [41] P-splines quantile regression estimation in varying coefficient models
    Y. Andriyana
    I. Gijbels
    A. Verhasselt
    TEST, 2014, 23 : 153 - 194
  • [42] Penalized composite quantile estimation for censored regression model with a diverging number of parameters
    Liu, Huilan
    Yang, Hu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6558 - 6578
  • [43] DAmcqrnn: An approach to censored monotone composite quantile regression neural network estimation
    Hao, Ruiting
    Han, Qiwei
    Li, Lu
    Yang, Xiaorong
    INFORMATION SCIENCES, 2023, 638
  • [44] Composite quantile estimation in partial functional linear regression model with dependent errors
    Ping Yu
    Ting Li
    Zhongyi Zhu
    Zhongzhan Zhang
    Metrika, 2019, 82 : 633 - 656
  • [45] Composite quantile estimation in partial functional linear regression model with dependent errors
    Yu, Ping
    Li, Ting
    Zhu, Zhongyi
    Zhang, Zhongzhan
    METRIKA, 2019, 82 (06) : 633 - 656
  • [46] Weighted composite quantile estimation and variable selection method for censored regression model
    Tang, Linjun
    Zhou, Zhangong
    Wu, Changchun
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (03) : 653 - 663
  • [47] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [48] QML Estimation of Asymmetric Markov Switching GARCH(p, q) Processes
    Abdelouahab Bibi
    Communications in Mathematics and Statistics, 2021, 9 : 405 - 438
  • [49] QML Estimation of Asymmetric Markov Switching GARCH(p, q) Processes
    Bibi, Abdelouahab
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2021, 9 (04) : 405 - 438
  • [50] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662