Composite quantile regression estimation for P-GARCH processes

被引:2
|
作者
Zhao Biao [1 ]
Chen Zhao [2 ]
Tao GuiPing [3 ]
Chen Min [4 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
composite quantile regression; periodic GARCH process; strictly periodic stationarity; strong consistency; asymptotic normality;
D O I
10.1007/s11425-015-5115-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic generalized autoregressive conditional heteroskedasticity (P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator. The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions. The proposed methodology is also illustrated by VaR on stock price data.
引用
收藏
页码:977 / 998
页数:22
相关论文
共 50 条
  • [21] Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data
    Xiao, Li-qun
    Wang, Zhan-feng
    Wu, Yao-hua
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (04): : 730 - 741
  • [22] EMPIRICAL REGRESSION QUANTILE PROCESSES
    Jureckova, Jana
    Picek, Jan
    Schindler, Martin
    APPLICATIONS OF MATHEMATICS, 2020, 65 (03) : 257 - 269
  • [23] Estimation and variable selection in single-index composite quantile regression
    Liu, Huilan
    Yang, Hu
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 7022 - 7039
  • [24] Composite Quantile Regression Estimation for Left Censored Response Longitudinal Data
    Li-qun XIAO
    Zhan-feng WANG
    Yao-hua WU
    Acta Mathematicae Applicatae Sinica, 2018, 34 (04) : 730 - 741
  • [25] Estimation and test procedures for composite quantile regression with covariates missing at random
    Ning, Zijun
    Tang, Linjun
    STATISTICS & PROBABILITY LETTERS, 2014, 95 : 15 - 25
  • [26] Bayesian composite quantile regression
    Huang, Hanwen
    Chen, Zhongxue
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (18) : 3744 - 3754
  • [27] Composite smoothed quantile regression
    Yan, Yibo
    Wang, Xiaozhou
    Zhang, Riquan
    STAT, 2023, 12 (01):
  • [28] Composite kernel quantile regression
    Bang, Sungwan
    Eo, Soo-Heang
    Jhun, Myoungshic
    Cho, Hyung Jun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2228 - 2240
  • [29] Bootstrapping Composite Quantile Regression
    Seo, Kangmin
    Bang, Sungwan
    Jhun, Myoungshic
    KOREAN JOURNAL OF APPLIED STATISTICS, 2012, 25 (02) : 341 - 350
  • [30] Estimation of additive quantile regression
    Dette, Holger
    Scheder, Regine
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2011, 63 (02) : 245 - 265