Hybrid quantile estimation for asymmetric power GARCH models

被引:0
|
作者
Wang, Guochang [1 ]
Zhu, Ke [2 ]
Li, Guodong [2 ]
Li, Wai Keung [2 ,3 ]
机构
[1] Jinan Univ, Coll Econ, Guangzhou, Peoples R China
[2] Univ Hong Kong, Dept Stat & Actuarial Sci, Hong Kong, Peoples R China
[3] Educ Univ Hong Kong, Dept Math & Informat Technol, Hong Kong, Peoples R China
关键词
Asymmetric power GARCH; Asymmetry testing; Non-stationarity; Quantile estimation; Strict stationarity testing; AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY; ARCH; INFERENCE; VOLATILITY; TESTS; RISK;
D O I
10.1016/j.jeconom.2020.05.005
中图分类号
F [经济];
学科分类号
02 ;
摘要
Asymmetric power GARCH models have been widely used to study the higher order moments of financial returns, while their quantile estimation has been rarely investigated. This paper introduces a simple monotonic transformation on its conditional quantile function to make the quantile regression tractable. The asymptotic normality of the resulting quantile estimators is established under either stationarity or non-stationarity. Moreover, based on the estimation procedure, new tests for strict stationarity and asymmetry are also constructed. This is the first try of the quantile estimation for non-stationary ARCH-type models in the literature. The usefulness of the proposed methodology is illustrated by simulation results and real data analysis. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:264 / 284
页数:21
相关论文
共 50 条
  • [1] Estimation of multivariate asymmetric power GARCH models
    Boubacar Mainassara, Y.
    Kadmiri, O.
    Saussereau, B.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [2] M-Quantile Estimation for GARCH Models
    Patrocinio, Patrick F. F.
    Reisen, Valderio A. A.
    Bondon, Pascal
    Monte, Edson Z. Z.
    Danilevicz, Ian M. M.
    [J]. COMPUTATIONAL ECONOMICS, 2024, 63 (06) : 2175 - 2192
  • [3] QUANTILE ESTIMATION OF REGRESSION MODELS WITH GARCH-X ERRORS
    Zhu, Qianqian
    Li, Guodong
    Xiao, Zhijie
    [J]. STATISTICA SINICA, 2021, 31 (03) : 1261 - 1284
  • [4] An analysis of the flexibility of Asymmetric Power GARCH models
    Ané, Thierry
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (02) : 1293 - 1311
  • [5] Semiparametric efficient adaptive estimation of asymmetric GARCH models
    Sun, Yiguo
    Stengos, Thanasis
    [J]. JOURNAL OF ECONOMETRICS, 2006, 133 (01) : 373 - 386
  • [6] QML ESTIMATION OF A CLASS OF MULTIVARIATE ASYMMETRIC GARCH MODELS
    Francq, Christian
    Zakoeian, Jean-Michel
    [J]. ECONOMETRIC THEORY, 2012, 28 (01) : 179 - 206
  • [7] Bayesian analysis of periodic asymmetric power GARCH models
    Aknouche, Abdelhakim
    Demmouche, Nacer
    Dimitrakopoulos, Stefanos
    Touche, Nassim
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2020, 24 (04):
  • [8] Quantile Regression Estimator for GARCH Models
    Lee, Sangyeol
    Noh, Jungsik
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) : 2 - 20
  • [9] Conditional quantile analysis for realized GARCH models
    Kim, Donggyu
    Oh, Minseog
    Wang, Yazhen
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2022, 43 (04) : 640 - 665
  • [10] Test for conditional quantile change in GARCH models
    Sangyeol Lee
    Chang Kyeom Kim
    [J]. Journal of the Korean Statistical Society, 2022, 51 : 480 - 499