Composite quantile regression estimation for P-GARCH processes

被引:2
|
作者
Zhao Biao [1 ]
Chen Zhao [2 ]
Tao GuiPing [3 ]
Chen Min [4 ]
机构
[1] Univ Sci & Technol China, Dept Stat & Finance, Hefei 230026, Peoples R China
[2] Penn State Univ, Dept Stat, University Pk, PA 16802 USA
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
composite quantile regression; periodic GARCH process; strictly periodic stationarity; strong consistency; asymptotic normality;
D O I
10.1007/s11425-015-5115-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the periodic generalized autoregressive conditional heteroskedasticity (P-GARCH) process and propose a robust estimator by composite quantile regression. We study some useful properties about the P-GARCH model. Under some mild conditions, we establish the asymptotic results of proposed estimator. The Monte Carlo simulation is presented to assess the performance of proposed estimator. Numerical study results show that our proposed estimation outperforms other existing methods for heavy tailed distributions. The proposed methodology is also illustrated by VaR on stock price data.
引用
下载
收藏
页码:977 / 998
页数:22
相关论文
共 50 条
  • [1] Composite quantile regression estimation for P-GARCH processes
    ZHAO Biao
    CHEN Zhao
    TAO GuiPing
    CHEN Min
    Science China Mathematics, 2016, 59 (05) : 977 - 998
  • [2] Composite quantile regression estimation for P-GARCH processes
    Biao Zhao
    Zhao Chen
    GuiPing Tao
    Min Chen
    Science China Mathematics, 2016, 59 : 977 - 998
  • [3] QUANTILE ESTIMATION OF REGRESSION MODELS WITH GARCH-X ERRORS
    Zhu, Qianqian
    Li, Guodong
    Xiao, Zhijie
    STATISTICA SINICA, 2021, 31 (03) : 1261 - 1284
  • [4] Composite support vector quantile regression estimation
    Shim, Jooyong
    Hwang, Changha
    Seok, Kyungha
    COMPUTATIONAL STATISTICS, 2014, 29 (06) : 1651 - 1665
  • [5] Composite support vector quantile regression estimation
    Jooyong Shim
    Changha Hwang
    Kyungha Seok
    Computational Statistics, 2014, 29 : 1651 - 1665
  • [6] Quantile Regression Estimator for GARCH Models
    Lee, Sangyeol
    Noh, Jungsik
    SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) : 2 - 20
  • [7] Composite quantile regression for GARCH models using high-frequency data
    Wang, Meng
    Chen, Zhao
    Wang, Christina Dan
    ECONOMETRICS AND STATISTICS, 2018, 7 : 115 - 133
  • [8] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [9] Weighted composite quantile regression estimation of DTARCH models
    Jiang, Jiancheng
    Jiang, Xuejun
    Song, Xinyuan
    ECONOMETRICS JOURNAL, 2014, 17 (01): : 1 - 23
  • [10] Robust and efficient estimation with weighted composite quantile regression
    Jiang, Xuejun
    Li, Jingzhi
    Xia, Tian
    Yan, Wanfeng
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2016, 457 : 413 - 423