Regression Quantile and Averaged Regression Quantile Processes

被引:0
|
作者
Jureckova, Jana [1 ]
机构
[1] Charles Univ Prague, Dept Probabil & Stat, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Averaged regression quantile; Regression quantile process; Two-step regression quantile process; RANK-SCORES;
D O I
10.1007/978-3-319-51313-3_3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the averaged version (B) over tilde (n)(alpha) of the two-step regression alpha-quantile, introduced in [6] and studied in [7]. We show that it is asymptotically equivalent to the averaged version (B) over bar (n)(alpha) of ordinary regression quantile and also study the finite-sample relation of (B) over tilde (n)(alpha) to (B) over tilde (n)(alpha). An interest of its own has the fact that the vector of slope components of the regression alpha-quantile coincides with a particular R-estimator of the slope components of regression parameter. Under a finite n, the stochastic processes (B) over tilde (n) = {(B) over tilde (n)(alpha) : 0 < alpha 1} and (B) over tilde (n) = {(B) over bar (n)(alpha) : 0 < alpha < 1} differ only by a drift.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] Averaged extreme regression quantile
    Jureckova, Jana
    [J]. EXTREMES, 2016, 19 (01) : 41 - 49
  • [2] Averaged extreme regression quantile
    Jana Jurečková
    [J]. Extremes, 2016, 19 : 41 - 49
  • [3] Empirical Regression Quantile Processes
    Jana Jurečková
    Jan Picek
    Martin Schindler
    [J]. Applications of Mathematics, 2020, 65 : 257 - 269
  • [4] EMPIRICAL REGRESSION QUANTILE PROCESSES
    Jureckova, Jana
    Picek, Jan
    Schindler, Martin
    [J]. APPLICATIONS OF MATHEMATICS, 2020, 65 (03) : 257 - 269
  • [5] Quantile processes for semi and nonparametric regression
    Chao, Shih-Kang
    Volgushev, Stanislav
    Cheng, Guang
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 3272 - 3331
  • [6] DISTRIBUTED INFERENCE FOR QUANTILE REGRESSION PROCESSES
    Volgushev, Stanislav
    Chao, Shih-Kang
    Cheng, Guang
    [J]. ANNALS OF STATISTICS, 2019, 47 (03): : 1634 - 1662
  • [7] Moderate deviations for quantile regression processes
    Mao, Mingzhi
    Guo, Wanli
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (12) : 2879 - 2892
  • [8] Composite versus model-averaged quantile regression
    Bloznelis, Daumantas
    Claeskens, Gerda
    Zhou, Jing
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 32 - 46
  • [9] Quantile regression
    Koenker, R
    Hallock, KF
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [10] Quantile regression
    Karlsson, Andreas
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256