Regression Quantile and Averaged Regression Quantile Processes

被引:0
|
作者
Jureckova, Jana [1 ]
机构
[1] Charles Univ Prague, Dept Probabil & Stat, Fac Math & Phys, Sokolovska 83, Prague 18675 8, Czech Republic
关键词
Averaged regression quantile; Regression quantile process; Two-step regression quantile process; RANK-SCORES;
D O I
10.1007/978-3-319-51313-3_3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the averaged version (B) over tilde (n)(alpha) of the two-step regression alpha-quantile, introduced in [6] and studied in [7]. We show that it is asymptotically equivalent to the averaged version (B) over bar (n)(alpha) of ordinary regression quantile and also study the finite-sample relation of (B) over tilde (n)(alpha) to (B) over tilde (n)(alpha). An interest of its own has the fact that the vector of slope components of the regression alpha-quantile coincides with a particular R-estimator of the slope components of regression parameter. Under a finite n, the stochastic processes (B) over tilde (n) = {(B) over tilde (n)(alpha) : 0 < alpha 1} and (B) over tilde (n) = {(B) over bar (n)(alpha) : 0 < alpha < 1} differ only by a drift.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [31] Quantile ratio regression
    Farcomeni, Alessio
    Geraci, Marco
    [J]. STATISTICS AND COMPUTING, 2024, 34 (02)
  • [32] Extremal quantile regression
    Chernozhukov, V
    [J]. ANNALS OF STATISTICS, 2005, 33 (02): : 806 - 839
  • [33] ENVELOPE QUANTILE REGRESSION
    Ding, Shanshan
    Su, Zhihua
    Zhu, Guangyu
    Wang, Lan
    [J]. STATISTICA SINICA, 2021, 31 (01) : 79 - 105
  • [34] Moving quantile regression
    Tong, Hongzhi
    Wu, Qiang
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2020, 205 : 46 - 63
  • [35] Spatial Quantile Regression
    Trzpiot, Grazyna
    [J]. COMPARATIVE ECONOMIC RESEARCH-CENTRAL AND EASTERN EUROPE, 2012, 15 (04): : 265 - 279
  • [36] Goodness of fit and related inference processes for quantile regression
    Koenker, R
    Machado, JAF
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1296 - 1310
  • [37] SMOOTHED QUANTILE REGRESSION PROCESSES FOR BINARY RESPONSE MODELS
    Volgushev, Stanislav
    [J]. ECONOMETRIC THEORY, 2020, 36 (02) : 292 - 330
  • [38] Censored quantile regression processes under dependence and penalization
    Volgushev, Stanislav
    Wagener, Jens
    Dette, Holger
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 2405 - 2447
  • [39] THE EVALUATION OF UNIVERSITY EDUCATIONAL PROCESSES: A QUANTILE REGRESSION APPROACH
    Davino, C.
    Vistocco, D.
    [J]. STATISTICA, 2007, 67 (03): : 281 - 292
  • [40] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346