Moving quantile regression

被引:0
|
作者
Tong, Hongzhi [1 ]
Wu, Qiang [2 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
Quantile regression; Regularization; Reproducing kernel Hilbert space; Error analysis; Learning rate; CONDITIONAL QUANTILES; REGULARIZATION; OPERATORS; RATES;
D O I
10.1016/j.jspi.2019.06.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is a technique to estimate the conditional quantile. In this paper we propose a localized method for quantile regression, the regularized moving quantile regression, which can be used to analyze scattered data efficiently. We present a rigorous global error analysis in the learning theory framework. The main results include an inequality that bridges the gap between the global risk and local risk, a characterization of the approximation that shows the moving technique allows to approximate very complicated functions by simple function classes, and a learning rate analysis. These results indicate that the moving quantile regression method converges fast under mild conditions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 63
页数:18
相关论文
共 50 条
  • [1] Moving Beyond the Linear Regression Model: Advantages of the Quantile Regression Model
    Li, Mingxiang
    JOURNAL OF MANAGEMENT, 2015, 41 (01) : 71 - 98
  • [2] Moving Beyond Linear Regression: Implementing and Interpreting Quantile Regression Models With Fixed Effects
    Rios-Avila, Fernando
    Maroto, Michelle Lee
    SOCIOLOGICAL METHODS & RESEARCH, 2024, 53 (02) : 639 - 682
  • [3] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [4] Quantile regression
    Koenker, R
    Hallock, KF
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [5] Quantile regression
    Karlsson, Andreas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [6] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452
  • [7] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [8] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [9] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [10] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32