Moving quantile regression

被引:0
|
作者
Tong, Hongzhi [1 ]
Wu, Qiang [2 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
Quantile regression; Regularization; Reproducing kernel Hilbert space; Error analysis; Learning rate; CONDITIONAL QUANTILES; REGULARIZATION; OPERATORS; RATES;
D O I
10.1016/j.jspi.2019.06.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is a technique to estimate the conditional quantile. In this paper we propose a localized method for quantile regression, the regularized moving quantile regression, which can be used to analyze scattered data efficiently. We present a rigorous global error analysis in the learning theory framework. The main results include an inequality that bridges the gap between the global risk and local risk, a characterization of the approximation that shows the moving technique allows to approximate very complicated functions by simple function classes, and a learning rate analysis. These results indicate that the moving quantile regression method converges fast under mild conditions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 63
页数:18
相关论文
共 50 条
  • [31] A moving average Cholesky factor model in covariance modeling for composite quantile regression with longitudinal data
    Lv, Jing
    Guo, Chaohui
    Yang, Hu
    Li, Yalian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2017, 112 : 129 - 144
  • [32] Advanced algorithms for penalized quantile and composite quantile regression
    Pietrosanu, Matthew
    Gao, Jueyu
    Kong, Linglong
    Jiang, Bei
    Niu, Di
    COMPUTATIONAL STATISTICS, 2021, 36 (01) : 333 - 346
  • [33] Advanced algorithms for penalized quantile and composite quantile regression
    Matthew Pietrosanu
    Jueyu Gao
    Linglong Kong
    Bei Jiang
    Di Niu
    Computational Statistics, 2021, 36 : 333 - 346
  • [34] Assessing quantile prediction with censored quantile regression models
    Li, Ruosha
    Peng, Limin
    BIOMETRICS, 2017, 73 (02) : 517 - 528
  • [35] Regression Adjustment for Noncrossing Bayesian Quantile Regression
    Rodrigues, T.
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 275 - 284
  • [36] Local Composite Quantile Regression for Regression Discontinuity
    Huang, Xiao
    Zhan, Zhaoguo
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2022, 40 (04) : 1863 - 1875
  • [37] A censored quantile regression approach for relative survival analysis: Relative survival quantile regression
    Williamson, John M.
    Lin, Hung-Mo
    Lyles, Robert H.
    BIOMETRICAL JOURNAL, 2023, 65 (05)
  • [38] An application of parametric quantile regression to extend the two-stage quantile regression for ratemaking
    Baione, Fabio
    Biancalana, Davide
    SCANDINAVIAN ACTUARIAL JOURNAL, 2021, 2021 (02) : 156 - 170
  • [39] Regularized Bayesian quantile regression
    El Adlouni, Salaheddine
    Salaou, Garba
    St-Hilaire, Andre
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (01) : 277 - 293
  • [40] Comment on "Local quantile regression"
    Koenker, Roger
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (07) : 1134 - 1135