Moving quantile regression

被引:0
|
作者
Tong, Hongzhi [1 ]
Wu, Qiang [2 ]
机构
[1] Univ Int Business & Econ, Sch Stat, Beijing 100029, Peoples R China
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
关键词
Quantile regression; Regularization; Reproducing kernel Hilbert space; Error analysis; Learning rate; CONDITIONAL QUANTILES; REGULARIZATION; OPERATORS; RATES;
D O I
10.1016/j.jspi.2019.06.003
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantile regression is a technique to estimate the conditional quantile. In this paper we propose a localized method for quantile regression, the regularized moving quantile regression, which can be used to analyze scattered data efficiently. We present a rigorous global error analysis in the learning theory framework. The main results include an inequality that bridges the gap between the global risk and local risk, a characterization of the approximation that shows the moving technique allows to approximate very complicated functions by simple function classes, and a learning rate analysis. These results indicate that the moving quantile regression method converges fast under mild conditions. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 63
页数:18
相关论文
共 50 条
  • [21] EMPIRICAL REGRESSION QUANTILE
    SUEYOSHI, T
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1991, 34 (03) : 250 - 262
  • [22] Adaptive quantile regression
    van de Geer, SA
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 235 - 250
  • [23] RESET for quantile regression
    Taisuke Otsu
    TEST, 2009, 18 : 381 - 391
  • [24] Sparse quantile regression
    Chen, Le-Yu
    Lee, Sokbae
    JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 2195 - 2217
  • [25] Quantile ratio regression
    Farcomeni, Alessio
    Geraci, Marco
    STATISTICS AND COMPUTING, 2024, 34 (02)
  • [26] ENVELOPE QUANTILE REGRESSION
    Ding, Shanshan
    Su, Zhihua
    Zhu, Guangyu
    Wang, Lan
    STATISTICA SINICA, 2021, 31 (01) : 79 - 105
  • [27] Extremal quantile regression
    Chernozhukov, V
    ANNALS OF STATISTICS, 2005, 33 (02): : 806 - 839
  • [28] Partial quantile regression
    Yadolah Dodge
    Joe Whittaker
    Metrika, 2009, 70 : 35 - 57
  • [29] Spatial Quantile Regression
    Trzpiot, Grazyna
    COMPARATIVE ECONOMIC RESEARCH-CENTRAL AND EASTERN EUROPE, 2012, 15 (04): : 265 - 279
  • [30] A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting
    Arunraj, Nari Sivanandam
    Ahrens, Diane
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2015, 170 : 321 - 335