Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
欧洲研究理事会; 英国经济与社会研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [1] Adaptive sparse group LASSO in quantile regression
    Mendez-Civieta, Alvaro
    Aguilera-Morillo, M. Carmen
    Lillo, Rosa E.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2021, 15 (03) : 547 - 573
  • [2] Orthogonal Matching Pursuit for Sparse Quantile Regression
    Aravkin, Aleksandr
    Lozano, Aurelie
    Luss, Ronny
    Kambadur, Prabhanjan
    2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 11 - 19
  • [3] Adaptive sparse group LASSO in quantile regression
    Alvaro Mendez-Civieta
    M. Carmen Aguilera-Morillo
    Rosa E. Lillo
    Advances in Data Analysis and Classification, 2021, 15 : 547 - 573
  • [4] An efficient algorithm for structured sparse quantile regression
    Nassiri, Vahid
    Loris, Ignace
    COMPUTATIONAL STATISTICS, 2014, 29 (05) : 1321 - 1343
  • [5] An efficient algorithm for structured sparse quantile regression
    Vahid Nassiri
    Ignace Loris
    Computational Statistics, 2014, 29 : 1321 - 1343
  • [6] A frisch-newton algorithm for sparse quantile regression
    Koenker R.
    Ng P.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (2) : 225 - 236
  • [7] Fast learning rates for sparse quantile regression problem
    Lv, Shao-Gao
    Ma, Tie-Feng
    Liu, Liu
    Feng, Yun-Long
    NEUROCOMPUTING, 2013, 108 : 13 - 22
  • [8] Quantile function regression and variable selection for sparse models
    Yoshida, Takuma
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (04): : 1196 - 1221
  • [9] Incorporating Graphical Structure of Predictors in Sparse Quantile Regression
    Wang, Zhanfeng
    Liu, Xianhui
    Tang, Wenlu
    Lin, Yuanyuan
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2021, 39 (03) : 783 - 792
  • [10] A Frisch-Newton Algorithm for Sparse Quantile Regression
    Roger Koenker
    Pin Ng
    Acta Mathematicae Applicatae Sinica, 2005, (02) : 225 - 236