机构:
Acad Sinica, Inst Econ, Taipei City, TaiwanAcad Sinica, Inst Econ, Taipei City, Taiwan
Chen, Le-Yu
[1
]
Lee, Sokbae
论文数: 0引用数: 0
h-index: 0
机构:
Columbia Univ, Dept Econ, New York, NY 10027 USA
Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, EnglandAcad Sinica, Inst Econ, Taipei City, Taiwan
Lee, Sokbae
[2
,3
]
机构:
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
机构:
Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
Univ Brasilia, Dept Estat, Brasilia, DF, BrazilUniv New South Wales, Sch Math & Stat, Sydney, NSW, Australia
Rodrigues, T.
Dortet-Bernadet, J-L
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, CNRS, UMR 7501, Inst Rech Math Avancee, Strasbourg, FranceUniv New South Wales, Sch Math & Stat, Sydney, NSW, Australia
Dortet-Bernadet, J-L
Fan, Y.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Strasbourg, CNRS, UMR 7501, Inst Rech Math Avancee, Strasbourg, FranceUniv New South Wales, Sch Math & Stat, Sydney, NSW, Australia