Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
欧洲研究理事会; 英国经济与社会研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [41] GMM quantile regression
    Firpo, Sergio
    Galvao, Antonio F.
    Pinto, Cristine
    Poirier, Alexandre
    Sanroman, Graciela
    JOURNAL OF ECONOMETRICS, 2022, 230 (02) : 432 - 452
  • [42] Partial quantile regression
    Dodge, Yadolah
    Whittaker, Joe
    METRIKA, 2009, 70 (01) : 35 - 57
  • [43] Quantile regression forests
    Meinshausen, Nicolai
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 983 - 999
  • [44] Pyramid Quantile Regression
    Rodrigues, T.
    Dortet-Bernadet, J-L
    Fan, Y.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2019, 28 (03) : 732 - 746
  • [45] Bayesian quantile regression
    Yu, KM
    Moyeed, RA
    STATISTICS & PROBABILITY LETTERS, 2001, 54 (04) : 437 - 447
  • [46] Quantile ratio regression
    Alessio Farcomeni
    Marco Geraci
    Statistics and Computing, 2024, 34
  • [47] Quantile cointegrating regression
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2009, 150 (02) : 248 - 260
  • [48] EMPIRICAL REGRESSION QUANTILE
    SUEYOSHI, T
    JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF JAPAN, 1991, 34 (03) : 250 - 262
  • [49] Adaptive quantile regression
    van de Geer, SA
    RECENT ADVANCES AND TRENDS IN NONPARAMETRIC STATISTICS, 2003, : 235 - 250
  • [50] RESET for quantile regression
    Taisuke Otsu
    TEST, 2009, 18 : 381 - 391