Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
欧洲研究理事会; 英国经济与社会研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [21] Sparse Composite Quantile Regression in Ultrahigh Dimensions With Tuning Parameter Calibration
    Gu, Yuwen
    Zou, Hui
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (11) : 7132 - 7154
  • [22] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [23] ORACLE INEQUALITIES FOR SPARSE ADDITIVE QUANTILE REGRESSION IN REPRODUCING KERNEL HILBERT SPACE
    Lv, Shaogao
    Lin, Huazhen
    Lian, Heng
    Huang, Jian
    ANNALS OF STATISTICS, 2018, 46 (02): : 781 - 813
  • [24] Feature selection for probabilistic load forecasting via sparse penalized quantile regression
    Wang, Yi
    Gan, Dahua
    Zhang, Ning
    Xie, Le
    Kang, Chongqing
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (05) : 1200 - 1209
  • [25] SPARSE AND LOW-RANK MATRIX QUANTILE ESTIMATION WITH APPLICATION TO QUADRATIC REGRESSION
    Lu, Wenqi
    Zhu, Zhongyi
    Lian, Heng
    STATISTICA SINICA, 2023, 33 (02) : 945 - 959
  • [26] Feature selection for probabilistic load forecasting via sparse penalized quantile regression
    Yi WANG
    Dahua GAN
    Ning ZHANG
    Le XIE
    Chongqing KANG
    Journal of Modern Power Systems and Clean Energy, 2019, 7 (05) : 1200 - 1209
  • [27] ADMM for Sparse-Penalized Quantile Regression with Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 2046 - 2050
  • [28] Quantile regression
    Koenker, R
    Hallock, KF
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [29] Quantile regression
    Karlsson, Andreas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [30] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452