Sparse quantile regression

被引:0
|
作者
Chen, Le-Yu [1 ]
Lee, Sokbae [2 ,3 ]
机构
[1] Acad Sinica, Inst Econ, Taipei City, Taiwan
[2] Columbia Univ, Dept Econ, New York, NY 10027 USA
[3] Inst Fiscal Studies, Ctr Microdata Methods & Practice, London, England
基金
欧洲研究理事会; 英国经济与社会研究理事会;
关键词
Quantile regression; Sparse estimation; Mixed integer optimization; Finite sample property; Conformal prediction; Hamming distance; NONCONCAVE PENALIZED LIKELIHOOD; POST-SELECTION INFERENCE; VARIABLE SELECTION;
D O I
10.1016/j.jeconom.2023.02.014
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are nearly minimax-optimal and the same as those for l1-penalized and non-convex penalized estimators. Further, we characterize expected Hamming loss for the l0- penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n & AP; 103 and up to p > 103). In sum, our l0-based method produces a much sparser estimator than the l1-penalized and non-convex penalized approaches without compromising precision. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:2195 / 2217
页数:23
相关论文
共 50 条
  • [31] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [32] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [33] l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS
    Belloni, Alexandre
    Chernozhukov, Victor
    ANNALS OF STATISTICS, 2011, 39 (01): : 82 - 130
  • [34] Quantile regression for large-scale data via sparse exponential transform method
    Xu, Q. F.
    Cai, C.
    Jiang, C. X.
    Huang, X.
    STATISTICS, 2019, 53 (01) : 26 - 42
  • [35] Smoothing ADMM for Sparse-Penalized Quantile Regression With Non-Convex Penalties
    Mirzaeifard, Reza
    Venkategowda, Naveen K. D.
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    IEEE OPEN JOURNAL OF SIGNAL PROCESSING, 2024, 5 (213-228): : 213 - 228
  • [36] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [37] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] RESET for quantile regression
    Otsu, Taisuke
    TEST, 2009, 18 (02) : 381 - 391
  • [39] Canonical quantile regression
    Portnoy, Stephen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192
  • [40] On multivariate quantile regression
    Chakraborty, B
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2003, 110 (1-2) : 109 - 132