RESET for quantile regression

被引:2
|
作者
Otsu, Taisuke [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
关键词
Quantile regression; RESET;
D O I
10.1007/s11749-008-0097-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a simple specification test for quantile regression models. Our test is based on Ramsey's (J. R. Stat. Soc. B 31:350-371, 1969) RESET (regression specification error test). Comparing to existing nonparametric specification tests, the proposed test does not contain kernel functions and bandwidth parameters and is easy to implement. Although the proposed test is not necessarily consistent against all types of misspecification, simulation results indicate that our test has reasonable size and power properties and can be more powerful than nonparametric specification tests in small samples.
引用
收藏
页码:381 / 391
页数:11
相关论文
共 50 条
  • [1] RESET for quantile regression
    Taisuke Otsu
    [J]. TEST, 2009, 18 : 381 - 391
  • [2] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    [J]. ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [3] Quantile regression
    Koenker, R
    Hallock, KF
    [J]. JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [4] Quantile regression
    Karlsson, Andreas
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [5] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    [J]. Nature Methods, 2019, 16 : 451 - 452
  • [6] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    [J]. JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [7] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    [J]. NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [8] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [9] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [10] Partial quantile regression
    Dodge, Yadolah
    Whittaker, Joe
    [J]. METRIKA, 2009, 70 (01) : 35 - 57