Pyramid Quantile Regression

被引:8
|
作者
Rodrigues, T. [1 ,2 ]
Dortet-Bernadet, J-L [3 ]
Fan, Y. [3 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
[2] Univ Brasilia, Dept Estat, Brasilia, DF, Brazil
[3] Univ Strasbourg, CNRS, UMR 7501, Inst Rech Math Avancee, Strasbourg, France
基金
澳大利亚研究理事会;
关键词
Bayesian quantile pyramid; Extremal quantile regression; Simultaneous quantile regression; POLYA TREE DISTRIBUTIONS;
D O I
10.1080/10618600.2019.1575225
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We describe a Bayesian model for simultaneous linear quantile regression at several specified quantile levels. More specifically, we propose to model the conditional distributions by using random probability measures, known as quantile pyramids, introduced by Hjort and Walker. Unlike many existing approaches, this framework allows us to specify meaningful priors on the conditional distributions, while retaining the flexibility afforded by the nonparametric error distribution formulation. Simulation studies demonstrate the flexibility of the proposed approach in estimating diverse scenarios, generally outperforming other competitive methods. We also provide conditions for posterior consistency. The method is particularly promising for modeling the extremal quantiles. Applications to extreme value analysis and in higher dimensions are also explored through data examples. Supplemental material for this article is available online.
引用
收藏
页码:732 / 746
页数:15
相关论文
共 50 条
  • [1] Regression Quantile and Averaged Regression Quantile Processes
    Jureckova, Jana
    ANALYTICAL METHODS IN STATISTICS, AMISTAT 2015, 2017, 193 : 53 - 62
  • [2] Quantile regression
    Koenker, R
    Hallock, KF
    JOURNAL OF ECONOMIC PERSPECTIVES, 2001, 15 (04): : 143 - 156
  • [3] Quantile regression
    Karlsson, Andreas
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 : 256 - 256
  • [4] Quantile regression
    Kiranmoy Das
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2019, 16 : 451 - 452
  • [5] Quantile regression
    Chernozhukov, Victor
    Galvao, Antonio F.
    He, Xuming
    Xiao, Zhijie
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 1 - 3
  • [6] Quantile regression
    Das, Kiranmoy
    Krzywinski, Martin
    Altman, Naomi
    NATURE METHODS, 2019, 16 (06) : 451 - 452
  • [7] Quantile Regression on Quantile Ranges - A Threshold Approach
    Kuan, Chung-Ming
    Michalopoulos, Christos
    Xiao, Zhijie
    JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (01) : 99 - 119
  • [8] Conformalized Quantile Regression
    Romano, Yaniv
    Patterson, Evan
    Candes, Emmanuel J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [9] RESET for quantile regression
    Otsu, Taisuke
    TEST, 2009, 18 (02) : 381 - 391
  • [10] Canonical quantile regression
    Portnoy, Stephen
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 192