Finite groups whose all proper subgroups are C-groups

被引:1
|
作者
Guo, Pengfei [1 ]
Liu, Jianjun [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, 99 Longkun South Rd, Haikou 571158, Hainan, Peoples R China
[2] Southwest Univ, Sch Math & Stat, 2 Tiansheng Rd, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
normal subgroup; abnormal subgroup; minimal non-C-group;
D O I
10.21136/CMJ.2017.0542-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is said to be a C-group if for every divisor d of the order of G, there exists a subgroup H of G of order d such that H is normal or abnormal in G. We give a complete classification of those groups which are not C-groups but all of whose proper subgroups are C-groups.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
  • [21] A note on groups whose proper subgroups are quasihamiltonian-by-finite
    de Giovanni, Francesco
    Saccomanno, Federica
    RICERCHE DI MATEMATICA, 2017, 66 (02) : 619 - 627
  • [22] GROUPS WHOSE PROPER QUOTIENTS HAVE FINITE DERIVED SUBGROUPS
    ROBINSON, DJS
    ZHANG, ZR
    JOURNAL OF ALGEBRA, 1988, 118 (02) : 346 - 368
  • [23] Finite groups all of whose subgroups are σ-subnormal or σ-abnormal
    Huang, Jianhong
    Hu, Bin
    Wu, Xinwei
    COMMUNICATIONS IN ALGEBRA, 2017, 45 (10) : 4542 - 4549
  • [24] Finite groups all of whose small subgroups are normal
    Berkovich, Yakov
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (06)
  • [25] FINITE GROUPS ALL OF WHOSE SMALL SUBGROUPS ARE PRONORMAL
    Malinowska, I. A.
    ACTA MATHEMATICA HUNGARICA, 2015, 147 (02) : 324 - 337
  • [26] Finite groups all of whose small subgroups are pronormal
    I. A. Malinowska
    Acta Mathematica Hungarica, 2015, 147 : 324 - 337
  • [27] FINITE GROUPS ALL OF WHOSE PROPER CENTRALIZERS ARE CYCLIC
    Amiri, S. M. Jafarian
    Rostami, H.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 755 - 762
  • [28] On groups with all proper subgroups finite-by-abelian-by-finite
    Dardano, Ulderico
    De Mari, Fausto
    ARCHIV DER MATHEMATIK, 2021, 116 (06) : 611 - 619
  • [29] On groups with all proper subgroups finite-by-abelian-by-finite
    Ulderico Dardano
    Fausto De Mari
    Archiv der Mathematik, 2021, 116 : 611 - 619
  • [30] FINITE GROUPS WHOSE MAXIMAL SUBGROUPS HAVE ONLY SOLUBLE PROPER SUBGROUPS
    Lytkina, D. V.
    Zhurtov, A. Kh.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2022, 19 (01): : 237 - 240