Finite groups whose all proper subgroups are C-groups

被引:1
|
作者
Guo, Pengfei [1 ]
Liu, Jianjun [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, 99 Longkun South Rd, Haikou 571158, Hainan, Peoples R China
[2] Southwest Univ, Sch Math & Stat, 2 Tiansheng Rd, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
normal subgroup; abnormal subgroup; minimal non-C-group;
D O I
10.21136/CMJ.2017.0542-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is said to be a C-group if for every divisor d of the order of G, there exists a subgroup H of G of order d such that H is normal or abnormal in G. We give a complete classification of those groups which are not C-groups but all of whose proper subgroups are C-groups.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
  • [31] Groups whose proper subgroups are linear
    de Giovanni, F.
    Trombetti, M.
    Wehrfritz, B. A. F.
    JOURNAL OF ALGEBRA, 2022, 592 : 153 - 168
  • [32] Commutator subgroups of irreducible C-groups
    Semenov, YS
    SBORNIK MATHEMATICS, 1996, 187 (3-4) : 403 - 412
  • [33] Finite p-groups all of whose non-abelian proper subgroups are metacyclic
    Zhang, Qinhai
    An, Lijian
    Xu, Mingyao
    ARCHIV DER MATHEMATIK, 2006, 87 (01) : 1 - 5
  • [34] Finite p-groups all of whose non-abelian proper subgroups are metacyclic
    Qinhai Zhang
    Lijian An
    Mingyao Xu
    Archiv der Mathematik, 2006, 87 : 1 - 5
  • [35] Finite groups all of whose abelian subgroups are QTI-subgroups
    Qian, Guohua
    Tang, Feng
    JOURNAL OF ALGEBRA, 2008, 320 (09) : 3605 - 3611
  • [36] FINITE GROUPS ALL OF WHOSE SECOND MAXIMAL SUBGROUPS ARE PSC-GROUPS
    Shen, Zhencai
    Li, Shirong
    Shi, Wujie
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2009, 8 (02) : 229 - 242
  • [37] Finite groups all of whose second maximal subgroups are Hp-groups
    Zhong, Xianggui
    Lu, Jiakuan
    Li, Yonggang
    MONATSHEFTE FUR MATHEMATIK, 2013, 172 (3-4): : 477 - 486
  • [38] Groups whose all nonnormal subgroups generate a nontrivial proper subgroup
    Chernikov, NS
    Dovzhenko, SA
    SIBERIAN MATHEMATICAL JOURNAL, 2006, 47 (01) : 173 - 192
  • [39] Groups Whose All Nonnormal Subgroups Generate a Nontrivial Proper Subgroup
    N. S. Chernikov
    S. A. Dovzhenko
    Siberian Mathematical Journal, 2006, 47 : 173 - 192
  • [40] Groups whose proper subgroups are (locally finite)-by-(locally nilpotent)
    Dilmi, Amel
    Trabelsi, Nadir
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2015, 87 (1-2): : 209 - 219