Finite groups whose all proper subgroups are C-groups

被引:1
|
作者
Guo, Pengfei [1 ]
Liu, Jianjun [2 ]
机构
[1] Hainan Normal Univ, Sch Math & Stat, 99 Longkun South Rd, Haikou 571158, Hainan, Peoples R China
[2] Southwest Univ, Sch Math & Stat, 2 Tiansheng Rd, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
normal subgroup; abnormal subgroup; minimal non-C-group;
D O I
10.21136/CMJ.2017.0542-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A group G is said to be a C-group if for every divisor d of the order of G, there exists a subgroup H of G of order d such that H is normal or abnormal in G. We give a complete classification of those groups which are not C-groups but all of whose proper subgroups are C-groups.
引用
收藏
页码:513 / 522
页数:10
相关论文
共 50 条
  • [41] Finite p-groups whose proper subgroups are of class ≤ n
    Li, Pujin
    Qu, Haipeng
    Zeng, Jiwen
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2017, 16 (01)
  • [42] GROUPS WHOSE PROPER SUBGROUPS ARE GENERALIZED FC-GROUPS
    Imperatore, D.
    Russo, A.
    Vincenzi, G.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2011, 10 (06) : 1301 - 1308
  • [43] Finite groups whose all second maximal subgroups are cyclic
    Ma, Li
    Meng, Wei
    Ma, Wanqing
    OPEN MATHEMATICS, 2017, 15 : 611 - 615
  • [45] Groups with all proper subgroups soluble-by-finite rank
    Dixon, MR
    Evans, MJ
    Smith, H
    JOURNAL OF ALGEBRA, 2005, 289 (01) : 135 - 147
  • [46] Groups with all proper subgroups nilpotent-by-finite rank
    M. R. Dixon
    M. J. Evans
    H. Smith
    Archiv der Mathematik, 2000, 75 : 81 - 91
  • [47] Groups with all proper subgroups (finite rank)-by-nilpotent
    Martyn R. Dixon
    Martin J. Evans
    Howard Smith
    Archiv der Mathematik, 1999, 72 : 321 - 327
  • [48] String C-groups as transitive subgroups of Sn
    Cameron, Peter J.
    Fernandes, Maria Elisa
    Leemans, Dimitri
    Mixer, Mark
    JOURNAL OF ALGEBRA, 2016, 447 : 468 - 478
  • [49] Groups with all proper subgroups (finite rank)-by-nilpotent
    Dixon, MR
    Evans, MJ
    Smith, H
    ARCHIV DER MATHEMATIK, 1999, 72 (05) : 321 - 327
  • [50] Groups with all proper subgroups nilpotent-by-finite rank
    Dixon, MR
    Evans, MJ
    Smith, H
    ARCHIV DER MATHEMATIK, 2000, 75 (02) : 81 - 91