On groups with all proper subgroups finite-by-abelian-by-finite

被引:2
|
作者
Dardano, Ulderico [1 ]
De Mari, Fausto [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia Monte S Angelo, I-80126 Naples, Italy
关键词
Minimal-non-P; Core-finite; Commensurable; CN-subgroup; Infinite-rank;
D O I
10.1007/s00013-021-01580-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if all proper subgroups of a locally graded group G are finite-by-abelian-by-finite, then G contains a finite normal subgroup N such that all proper subgroups of G/N are abelian-by-finite. Then we apply this result to the study of groups which are minimal-non-P also for related group properties P. Finally we see how for locally (solubleby-finite) groups of infinite rank, it is enough to restrict attention to the proper subgroups with infinite rank.
引用
收藏
页码:611 / 619
页数:9
相关论文
共 50 条
  • [1] On groups with all proper subgroups finite-by-abelian-by-finite
    Ulderico Dardano
    Fausto De Mari
    Archiv der Mathematik, 2021, 116 : 611 - 619
  • [2] ON GROUPS WITH ABELIAN BY FINITE PROPER SUBGROUPS
    BRUNO, B
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3B (03): : 797 - 807
  • [3] LOCALLY FINITE-GROUPS WHOSE ALL PROPER SUBGROUPS ARE ALMOST ABELIAN
    BELYAEV, VV
    SIBERIAN MATHEMATICAL JOURNAL, 1983, 24 (03) : 323 - 328
  • [4] On groups with all proper subgroups of finite exponent
    Arikan, Ahmet
    Smith, Howard
    JOURNAL OF GROUP THEORY, 2011, 14 (05) : 765 - 775
  • [5] ON GROUPS ALL OF WHOSE PROPER SUBGROUPS ARE FINITE CYCLIC
    ADYAN, SI
    LYSENOK, IG
    MATHEMATICS OF THE USSR-IZVESTIYA, 1992, 39 (02): : 905 - 957
  • [6] Finite p-groups all of whose non-abelian proper subgroups are metacyclic
    Zhang, Qinhai
    An, Lijian
    Xu, Mingyao
    ARCHIV DER MATHEMATIK, 2006, 87 (01) : 1 - 5
  • [7] Finite p-groups all of whose non-abelian proper subgroups are metacyclic
    Qinhai Zhang
    Lijian An
    Mingyao Xu
    Archiv der Mathematik, 2006, 87 : 1 - 5
  • [8] Finite groups all of whose abelian subgroups are QTI-subgroups
    Qian, Guohua
    Tang, Feng
    JOURNAL OF ALGEBRA, 2008, 320 (09) : 3605 - 3611
  • [9] Finite groups whose all proper subgroups are C-groups
    Guo, Pengfei
    Liu, Jianjun
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2018, 68 (02) : 513 - 522
  • [10] Finite groups whose all proper subgroups are C-groups
    Pengfei Guo
    Jianjun Liu
    Czechoslovak Mathematical Journal, 2018, 68 : 513 - 522