Evaluating Commonsense in Pre-Trained Language Models

被引:0
|
作者
Zhou, Xuhui [1 ,4 ]
Zhang, Yue [2 ]
Cui, Leyang [2 ,3 ]
Huang, Dandan [2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[4] Westlake Univ, Hangzhou, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models' commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
引用
收藏
页码:9733 / 9740
页数:8
相关论文
共 50 条
  • [41] Capturing Semantics for Imputation with Pre-trained Language Models
    Mei, Yinan
    Song, Shaoxu
    Fang, Chenguang
    Yang, Haifeng
    Fang, Jingyun
    Long, Jiang
    [J]. 2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 61 - 72
  • [42] Compressing Pre-trained Language Models by Matrix Decomposition
    Ben Noach, Matan
    Goldberg, Yoav
    [J]. 1ST CONFERENCE OF THE ASIA-PACIFIC CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS AND THE 10TH INTERNATIONAL JOINT CONFERENCE ON NATURAL LANGUAGE PROCESSING (AACL-IJCNLP 2020), 2020, : 884 - 889
  • [43] On the Sentence Embeddings from Pre-trained Language Models
    Li, Bohan
    Zhou, Hao
    He, Junxian
    Wang, Mingxuan
    Yang, Yiming
    Li, Lei
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 9119 - 9130
  • [44] Pre-trained language models for keyphrase prediction: A review
    Umair, Muhammad
    Sultana, Tangina
    Lee, Young-Koo
    [J]. ICT EXPRESS, 2024, 10 (04): : 871 - 890
  • [45] Robust Lottery Tickets for Pre-trained Language Models
    Zheng, Rui
    Bao, Rong
    Zhou, Yuhao
    Liang, Di
    Wane, Sirui
    Wu, Wei
    Gui, Tao
    Zhang, Qi
    Huang, Xuanjing
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 2211 - 2224
  • [46] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    [J]. Science China(Technological Sciences), 2020, (10) - 1897
  • [47] Pre-trained models for natural language processing: A survey
    XiPeng Qiu
    TianXiang Sun
    YiGe Xu
    YunFan Shao
    Ning Dai
    XuanJing Huang
    [J]. Science China Technological Sciences, 2020, 63 : 1872 - 1897
  • [48] Leveraging pre-trained language models for code generation
    Soliman, Ahmed
    Shaheen, Samir
    Hadhoud, Mayada
    [J]. COMPLEX & INTELLIGENT SYSTEMS, 2024, 10 (03) : 3955 - 3980
  • [49] Pre-Trained Language Models for Text Generation: A Survey
    Li, Junyi
    Tang, Tianyi
    Zhao, Wayne Xin
    Nie, Jian-Yun
    Wen, Ji-Rong
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (09)
  • [50] Learning and Evaluating a Differentially Private Pre-trained Language Model
    Hoory, Shlomo
    Feder, Amir
    Tendler, Avichai
    Cohen, Alon
    Erell, Sofia
    Laish, Itay
    Nakhost, Hootan
    Stemmer, Uri
    Benjamini, Ayelet
    Hassidim, Avinatan
    Matias, Yossi
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2021, 2021, : 1178 - 1189