Pre-trained models for natural language processing: A survey

被引:0
|
作者
QIU XiPeng [1 ,2 ]
SUN TianXiang [1 ,2 ]
XU YiGe [1 ,2 ]
SHAO YunFan [1 ,2 ]
DAI Ning [1 ,2 ]
HUANG XuanJing [1 ,2 ]
机构
[1] School of Computer Science, Fudan University
[2] Shanghai Key Laboratory of Intelligent Information
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Recently, the emergence of pre-trained models(PTMs) has brought natural language processing(NLP) to a new era. In this survey, we provide a comprehensive review of PTMs for NLP. We first briefly introduce language representation learning and its research progress. Then we systematically categorize existing PTMs based on a taxonomy from four different perspectives. Next,we describe how to adapt the knowledge of PTMs to downstream tasks. Finally, we outline some potential directions of PTMs for future research. This survey is purposed to be a hands-on guide for understanding, using, and developing PTMs for various NLP tasks.
引用
收藏
页码:1872 / 1897
页数:26
相关论文
共 50 条
  • [1] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [2] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    [J]. Science China Technological Sciences, 2020, 63 (10) : 1872 - 1897
  • [3] Pre-trained models for natural language processing: A survey
    XiPeng Qiu
    TianXiang Sun
    YiGe Xu
    YunFan Shao
    Ning Dai
    XuanJing Huang
    [J]. Science China Technological Sciences, 2020, 63 : 1872 - 1897
  • [4] A Study of Pre-trained Language Models in Natural Language Processing
    Duan, Jiajia
    Zhao, Hui
    Zhou, Qian
    Qiu, Meikang
    Liu, Meiqin
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON SMART CLOUD (SMARTCLOUD 2020), 2020, : 116 - 121
  • [5] Recent Advances in Natural Language Processing via Large Pre-trained Language Models: A Survey
    Min, Bonan
    Ross, Hayley
    Sulem, Elior
    Ben Veyseh, Amir Pouran
    Nguyen, Thien Huu
    Sainz, Oscar
    Agirre, Eneko
    Heintz, Ilana
    Roth, Dan
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (02)
  • [6] Revisiting Pre-trained Models for Chinese Natural Language Processing
    Cui, Yiming
    Che, Wanxiang
    Liu, Ting
    Qin, Bing
    Wang, Shijin
    Hu, Guoping
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 657 - 668
  • [7] Revisiting Pre-trained Language Models and their Evaluation for Arabic Natural Language Processing
    Huawei Technologies Co., Ltd.
    不详
    不详
    [J]. Proc. Conf. Empir. Methods Nat. Lang. Process., EMNLP, (3135-3151):
  • [8] Pre-trained language models in medicine: A survey *
    Luo, Xudong
    Deng, Zhiqi
    Yang, Binxia
    Luo, Michael Y.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE, 2024, 154
  • [9] On the Effectiveness of Pre-Trained Language Models for Legal Natural Language Processing: An Empirical Study
    Song, Dezhao
    Gao, Sally
    He, Baosheng
    Schilder, Frank
    [J]. IEEE ACCESS, 2022, 10 : 75835 - 75858
  • [10] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430