Pre-trained language models in medicine: A survey *

被引:1
|
作者
Luo, Xudong [1 ,2 ,3 ]
Deng, Zhiqi [1 ,2 ,3 ]
Yang, Binxia [1 ,2 ,3 ]
Luo, Michael Y. [4 ]
机构
[1] Guangxi Normal Univ, Sch Comp Sci & Engn, Guilin 541004, Peoples R China
[2] Guangxi Normal Univ, Guangxi Key Lab Multisource Informat Min, Guilin 541004, Peoples R China
[3] Guangxi Normal Univ, Key Lab Educ Blockchain & Intelligent Technol, Minist Educ, Guilin 541004, Peoples R China
[4] Univ Cambridge, Emmanuel Coll, Cambridge CB2 3AP, England
基金
中国国家自然科学基金;
关键词
Natural language processing; Medical science; Healthcare; Pre-trained language model; BERT; GPT; NAMED ENTITY RECOGNITION; INFORMATION; EXTRACTION; PRECISION; SYSTEMS;
D O I
10.1016/j.artmed.2024.102904
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the rapid progress in Natural Language Processing (NLP), Pre -trained Language Models (PLM) such as BERT, BioBERT, and ChatGPT have shown great potential in various medical NLP tasks. This paper surveys the cutting -edge achievements in applying PLMs to various medical NLP tasks. Specifically, we first brief PLMS and outline the research of PLMs in medicine. Next, we categorise and discuss the types of tasks in medical NLP, covering text summarisation, question -answering, machine translation, sentiment analysis, named entity recognition, information extraction, medical education, relation extraction, and text mining. For each type of task, we first provide an overview of the basic concepts, the main methodologies, the advantages of applying PLMs, the basic steps of applying PLMs application, the datasets for training and testing, and the metrics for task evaluation. Subsequently, a summary of recent important research findings is presented, analysing their motivations, strengths vs weaknesses, similarities vs differences, and discussing potential limitations. Also, we assess the quality and influence of the research reviewed in this paper by comparing the citation count of the papers reviewed and the reputation and impact of the conferences and journals where they are published. Through these indicators, we further identify the most concerned research topics currently. Finally, we look forward to future research directions, including enhancing models' reliability, explainability, and fairness, to promote the application of PLMs in clinical practice. In addition, this survey also collect some download links of some model codes and the relevant datasets, which are valuable references for researchers applying NLP techniques in medicine and medical professionals seeking to enhance their expertise and healthcare service through AI technology.
引用
收藏
页数:43
相关论文
共 50 条
  • [1] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [2] A Survey of Knowledge Enhanced Pre-Trained Language Models
    Hu, Linmei
    Liu, Zeyi
    Zhao, Ziwang
    Hou, Lei
    Nie, Liqiang
    Li, Juanzi
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (04) : 1413 - 1430
  • [3] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    [J]. Science China Technological Sciences, 2020, 63 (10) : 1872 - 1897
  • [4] Pre-trained models for natural language processing: A survey
    QIU XiPeng
    SUN TianXiang
    XU YiGe
    SHAO YunFan
    DAI Ning
    HUANG XuanJing
    [J]. Science China(Technological Sciences), 2020, (10) - 1897
  • [5] Pre-trained models for natural language processing: A survey
    XiPeng Qiu
    TianXiang Sun
    YiGe Xu
    YunFan Shao
    Ning Dai
    XuanJing Huang
    [J]. Science China Technological Sciences, 2020, 63 : 1872 - 1897
  • [6] Pre-Trained Language Models for Text Generation: A Survey
    Li, Junyi
    Tang, Tianyi
    Zhao, Wayne Xin
    Nie, Jian-Yun
    Wen, Ji-Rong
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (09)
  • [7] Pre-trained Language Models in Biomedical Domain: A Systematic Survey
    Wang, Benyou
    Xie, Qianqian
    Pei, Jiahuan
    Chen, Zhihong
    Tiwari, Prayag
    Li, Zhao
    Fu, Jie
    [J]. ACM COMPUTING SURVEYS, 2024, 56 (03)
  • [8] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    [J]. ENGINEERING, 2023, 25 (51-65): : 51 - 65
  • [9] Commonsense Knowledge Reasoning and Generation with Pre-trained Language Models: A Survey
    Bhargava, Prajjwal
    Ng, Vincent
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12317 - 12325
  • [10] An Empirical Survey of the Effectiveness of Debiasing Techniques for Pre-trained Language Models
    Meade, Nicholas
    Poole-Dayan, Elinor
    Reddy, Siva
    [J]. PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 1878 - 1898