Learning and Evaluating a Differentially Private Pre-trained Language Model

被引:0
|
作者
Hoory, Shlomo [1 ]
Feder, Amir [1 ]
Tendler, Avichai [1 ]
Cohen, Alon [1 ]
Erell, Sofia [1 ]
Laish, Itay [1 ]
Nakhost, Hootan [1 ]
Stemmer, Uri [1 ]
Benjamini, Ayelet [1 ]
Hassidim, Avinatan [1 ]
Matias, Yossi [1 ]
机构
[1] Google, Tel Aviv, Israel
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextual language models have led to significantly better results, especially when pre-trained on the same data as the downstream task. While this additional pre-training usually improves performance, it can lead to information leakage and therefore risks the privacy of individuals mentioned in the training data. One method to guarantee the privacy of such individuals is to train a differentially-private language model, but this usually comes at the expense of model performance. Also, in the absence of a differentially private vocabulary training, it is not possible to modify the vocabulary to fit the new data, which might further degrade results. In this work we bridge these gaps, and provide guidance to future researchers and practitioners on how to improve privacy while maintaining good model performance. We introduce a novel differentially private word-piece algorithm, which allows training a tailored domain-specific vocabulary while maintaining privacy. We then experiment with entity extraction tasks from clinical notes, and demonstrate how to train a differentially private pre-trained language model (i.e., BERT) with a privacy guarantee of epsilon = 1.1 and with only a small degradation in performance. Finally, as it is hard to tell given a privacy parameter epsilon what was the effect on the trained representation, we present experiments showing that the trained model does not memorize private information.
引用
收藏
页码:1178 / 1189
页数:12
相关论文
共 50 条
  • [1] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [2] Hyperbolic Pre-Trained Language Model
    Chen, Weize
    Han, Xu
    Lin, Yankai
    He, Kaichen
    Xie, Ruobing
    Zhou, Jie
    Liu, Zhiyuan
    Sun, Maosong
    [J]. IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 3101 - 3112
  • [3] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    Chernyshev, D. I.
    Dobrov, B. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3028 - 3039
  • [4] Evaluating and Inducing Personality in Pre-trained Language Models
    Jiang, Guangyuan
    Xu, Manjie
    Zhu, Song-Chun
    Han, Wenjuan
    Zhang, Chi
    Zhu, Yixin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    D. I. Chernyshev
    B. V. Dobrov
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 3028 - 3039
  • [6] Pre-trained Language Model Representations for Language Generation
    Edunov, Sergey
    Baevski, Alexei
    Auli, Michael
    [J]. 2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 4052 - 4059
  • [7] Syntax-guided Contrastive Learning for Pre-trained Language Model
    Zhang, Shuai
    Wang, Lijie
    Xiao, Xinyan
    Wu, Hua
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 2430 - 2440
  • [8] Adder Encoder for Pre-trained Language Model
    Ding, Jianbang
    Zhang, Suiyun
    Li, Linlin
    [J]. CHINESE COMPUTATIONAL LINGUISTICS, CCL 2023, 2023, 14232 : 339 - 347
  • [9] Pre-trained language models evaluating themselves - A comparative study
    Koch, Philipp
    Assenmacher, Matthias
    Heumann, Christian
    [J]. PROCEEDINGS OF THE THIRD WORKSHOP ON INSIGHTS FROM NEGATIVE RESULTS IN NLP (INSIGHTS 2022), 2022, : 180 - 187
  • [10] Surgicberta: a pre-trained language model for procedural surgical language
    Bombieri, Marco
    Rospocher, Marco
    Ponzetto, Simone Paolo
    Fiorini, Paolo
    [J]. INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024, 18 (01) : 69 - 81