Evaluating Commonsense in Pre-Trained Language Models

被引:0
|
作者
Zhou, Xuhui [1 ,4 ]
Zhang, Yue [2 ]
Cui, Leyang [2 ,3 ]
Huang, Dandan [2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[4] Westlake Univ, Hangzhou, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models' commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
引用
收藏
页码:9733 / 9740
页数:8
相关论文
共 50 条
  • [1] Commonsense Knowledge Reasoning and Generation with Pre-trained Language Models: A Survey
    Bhargava, Prajjwal
    Ng, Vincent
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 12317 - 12325
  • [2] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    Chernyshev, D. I.
    Dobrov, B. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3028 - 3039
  • [3] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    D. I. Chernyshev
    B. V. Dobrov
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 3028 - 3039
  • [4] Evaluating and Inducing Personality in Pre-trained Language Models
    Jiang, Guangyuan
    Xu, Manjie
    Zhu, Song-Chun
    Han, Wenjuan
    Zhang, Chi
    Zhu, Yixin
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [5] Pre-trained language models evaluating themselves - A comparative study
    Koch, Philipp
    Assenmacher, Matthias
    Heumann, Christian
    [J]. PROCEEDINGS OF THE THIRD WORKSHOP ON INSIGHTS FROM NEGATIVE RESULTS IN NLP (INSIGHTS 2022), 2022, : 180 - 187
  • [6] Preserving Commonsense Knowledge from Pre-trained Language Models via Causal Inference
    Zheng, Junhao
    Ma, Qianli
    Qiu, Shengjie
    Wu, Yue
    Ma, Peitian
    Liu, Junlong
    Feng, Huawen
    Shang, Xichen
    Chen, Haibin
    [J]. PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 9155 - 9173
  • [7] Exploring Strategies for Generalizable Commonsense Reasoning with Pre-trained Models
    Ma, Kaixin
    Ilievski, Filip
    Francis, Jonathan
    Ozaki, Satoru
    Nyberg, Eric
    Oltramari, Alessandro
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 5474 - 5483
  • [8] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    [J]. ENGINEERING, 2023, 25 (51-65): : 51 - 65
  • [9] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    [J]. PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [10] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512