Evaluating Commonsense in Pre-Trained Language Models

被引:0
|
作者
Zhou, Xuhui [1 ,4 ]
Zhang, Yue [2 ]
Cui, Leyang [2 ,3 ]
Huang, Dandan [2 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
[2] Westlake Univ, Sch Engn, Hangzhou, Zhejiang, Peoples R China
[3] Zhejiang Univ, Hangzhou, Zhejiang, Peoples R China
[4] Westlake Univ, Hangzhou, Zhejiang, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contextualized representations trained over large raw text data have given remarkable improvements for NLP tasks including question answering and reading comprehension. There have been works showing that syntactic, semantic and word sense knowledge are contained in such representations, which explains why they benefit such tasks. However, relatively little work has been done investigating commonsense knowledge contained in contextualized representations, which is crucial for human question answering and reading comprehension. We study the commonsense ability of GPT, BERT, XLNet, and RoBERTa by testing them on seven challenging benchmarks, finding that language modeling and its variants are effective objectives for promoting models' commonsense ability while bi-directional context and larger training set are bonuses. We additionally find that current models do poorly on tasks require more necessary inference steps. Finally, we test the robustness of models by making dual test cases, which are correlated so that the correct prediction of one sample should lead to correct prediction of the other. Interestingly, the models show confusion on these test cases, which suggests that they learn commonsense at the surface rather than the deep level. We release a test set, named CATs publicly, for future research.
引用
收藏
页码:9733 / 9740
页数:8
相关论文
共 50 条
  • [21] Probing Pre-Trained Language Models for Disease Knowledge
    Alghanmi, Israa
    Espinosa-Anke, Luis
    Schockaert, Steven
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL-IJCNLP 2021, 2021, : 3023 - 3033
  • [22] Analyzing Individual Neurons in Pre-trained Language Models
    Durrani, Nadir
    Sajjad, Hassan
    Dalvi, Fahim
    Belinkov, Yonatan
    [J]. PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 4865 - 4880
  • [23] Emotional Paraphrasing Using Pre-trained Language Models
    Casas, Jacky
    Torche, Samuel
    Daher, Karl
    Mugellini, Elena
    Abou Khaled, Omar
    [J]. 2021 9TH INTERNATIONAL CONFERENCE ON AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION WORKSHOPS AND DEMOS (ACIIW), 2021,
  • [24] Pre-trained models for natural language processing: A survey
    Qiu XiPeng
    Sun TianXiang
    Xu YiGe
    Shao YunFan
    Dai Ning
    Huang XuanJing
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (10) : 1872 - 1897
  • [25] Prompt Tuning for Discriminative Pre-trained Language Models
    Yao, Yuan
    Dong, Bowen
    Zhang, Ao
    Zhang, Zhengyan
    Xie, Ruobing
    Liu, Zhiyuan
    Lin, Leyu
    Sun, Maosong
    Wang, Jianyong
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), 2022, : 3468 - 3473
  • [26] Dynamic Knowledge Distillation for Pre-trained Language Models
    Li, Lei
    Lin, Yankai
    Ren, Shuhuai
    Li, Peng
    Zhou, Jie
    Sun, Xu
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 379 - 389
  • [27] Impact of Morphological Segmentation on Pre-trained Language Models
    Westhelle, Matheus
    Bencke, Luciana
    Moreira, Viviane P.
    [J]. INTELLIGENT SYSTEMS, PT II, 2022, 13654 : 402 - 416
  • [28] InA: Inhibition Adaption on pre-trained language models
    Kang, Cheng
    Prokop, Jindrich
    Tong, Lei
    Zhou, Huiyu
    Hu, Yong
    Novak, Daniel
    [J]. NEURAL NETWORKS, 2024, 178
  • [29] Leveraging Pre-trained Language Models for Gender Debiasing
    Jain, Nishtha
    Popovic, Maja
    Groves, Declan
    Specia, Lucia
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 2188 - 2195
  • [30] Deep Entity Matching with Pre-Trained Language Models
    Li, Yuliang
    Li, Jinfeng
    Suhara, Yoshihiko
    Doan, AnHai
    Tan, Wang-Chiew
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2020, 14 (01): : 50 - 60