Evaluating and Inducing Personality in Pre-trained Language Models

被引:0
|
作者
Jiang, Guangyuan [1 ,2 ]
Xu, Manjie [1 ]
Zhu, Song-Chun [1 ,3 ]
Han, Wenjuan [4 ]
Zhang, Chi [3 ]
Zhu, Yixin [1 ]
机构
[1] Peking Univ, Inst Artificial Intelligence, Beijing, Peoples R China
[2] Peking Univ, Yuanpei Coll, Beijing, Peoples R China
[3] BIGAI, Natl Key Lab Gen Artificial Intelligence, Beijing, Peoples R China
[4] Beijing Jiaotong Univ, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Standardized and quantified evaluation of machine behaviors is a crux of understanding LLMs. In this study, we draw inspiration from psychometric studies by leveraging human personality theory as a tool for studying machine behaviors. Originating as a philosophical quest for human behaviors, the study of personality delves into how individuals differ in thinking, feeling, and behaving. Toward building and understanding human-like social machines, we are motivated to ask: Can we assess machine behaviors by leveraging human psychometric tests in a principled and quantitative manner? If so, can we induce a specific personality in LLMs? To answer these questions, we introduce the Machine Personality Inventory (MPI) tool for studying machine behaviors; MPI follows standardized personality tests, built upon the Big Five Personality Factors (Big Five) theory and personality assessment inventories. By systematically evaluating LLMs with MPI, we provide the first piece of evidence demonstrating the efficacy of MPI in studying LLMs behaviors. We further devise a PERSONALITY PROMPTING (P2) method to induce LLMs with specific personalities in a controllable way, capable of producing diverse and verifiable behaviors. We hope this work sheds light on future studies by adopting personality as the essential indicator for various downstream tasks, and could further motivate research into equally intriguing human-like machine behaviors.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Evaluating Commonsense in Pre-Trained Language Models
    Zhou, Xuhui
    Zhang, Yue
    Cui, Leyang
    Huang, Dandan
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9733 - 9740
  • [2] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    Chernyshev, D. I.
    Dobrov, B. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (08) : 3028 - 3039
  • [3] Evaluating the Summarization Comprehension of Pre-Trained Language Models
    D. I. Chernyshev
    B. V. Dobrov
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 3028 - 3039
  • [4] Pre-trained language models evaluating themselves - A comparative study
    Koch, Philipp
    Assenmacher, Matthias
    Heumann, Christian
    [J]. PROCEEDINGS OF THE THIRD WORKSHOP ON INSIGHTS FROM NEGATIVE RESULTS IN NLP (INSIGHTS 2022), 2022, : 180 - 187
  • [5] Pre-Trained Language Models and Their Applications
    Wang, Haifeng
    Li, Jiwei
    Wu, Hua
    Hovy, Eduard
    Sun, Yu
    [J]. ENGINEERING, 2023, 25 : 51 - 65
  • [6] Annotating Columns with Pre-trained Language Models
    Suhara, Yoshihiko
    Li, Jinfeng
    Li, Yuliang
    Zhang, Dan
    Demiralp, Cagatay
    Chen, Chen
    Tan, Wang-Chiew
    [J]. PROCEEDINGS OF THE 2022 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA (SIGMOD '22), 2022, : 1493 - 1503
  • [7] LaoPLM: Pre-trained Language Models for Lao
    Lin, Nankai
    Fu, Yingwen
    Yang, Ziyu
    Chen, Chuwei
    Jiang, Shengyi
    [J]. LREC 2022: THIRTEEN INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2022, : 6506 - 6512
  • [8] PhoBERT: Pre-trained language models for Vietnamese
    Dat Quoc Nguyen
    Anh Tuan Nguyen
    [J]. FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, EMNLP 2020, 2020, : 1037 - 1042
  • [9] HinPLMs: Pre-trained Language Models for Hindi
    Huang, Xixuan
    Lin, Nankai
    Li, Kexin
    Wang, Lianxi
    Gan, Suifu
    [J]. 2021 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2021, : 241 - 246
  • [10] Knowledge Inheritance for Pre-trained Language Models
    Qin, Yujia
    Lin, Yankai
    Yi, Jing
    Zhang, Jiajie
    Han, Xu
    Zhang, Zhengyan
    Su, Yusheng
    Liu, Zhiyuan
    Li, Peng
    Sun, Maosong
    Zhou, Jie
    [J]. NAACL 2022: THE 2022 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES, 2022, : 3921 - 3937