Improvement in Self-Heating Characteristic by Incorporating Hetero-Gate-Dielectric in Gate-All-Around MOSFETs

被引:24
|
作者
Song, Young Suh [1 ,2 ]
Kim, Jang Hyun [3 ]
Kim, Garam [4 ]
Kim, Hyun-Min [1 ]
Kim, Sangwan [5 ]
Park, Byung-Gook [1 ]
机构
[1] Seoul Natl Univ, Dept Elect & Comp Engn, Interuniv Semicond Res Ctr, Seoul 08826, South Korea
[2] Korea Mil Acad, Dept Comp Sci, Seoul 01805, South Korea
[3] Pukyong Natl Univ, Sch Elect Engn, Busan 48513, South Korea
[4] Myongji Univ, Dept Elect Engn, Yongin 17058, South Korea
[5] Ajou Univ, Dept Elect & Comp Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
MOSFET; Logic gates; Gallium arsenide; Thermal conductivity; Hafnium oxide; Conductivity; Calibration; Self-heating effects (SHEs); hetero-gate-dielectric (HGD); GAA MOSFETs; nanowire; high-k; gate current; RELIABILITY; TRANSISTORS; GEOMETRY;
D O I
10.1109/JEDS.2020.3038391
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
For improving self-heating effects (SHEs) in gate-all-around metal-oxide-semiconductor field-effect transistors (GAA MOSFETs), hetero-gate-dielectric (HGD) is utilized. The HGD consists of hafnium dioxide (HfO2) and silicon dioxide (SiO2), which has high thermal conductivity, hence SHEs are improved. In order to validate the HGD, technology computer-aided design (TCAD) simulation is performed through Synopsys Sentaurus three-dimensional (3D) tool. As a result, when the HGD is adopted in GAA MOSFETs, SHEs can be significantly improved from 498 K to 415 K. In addition, suppression of gate current, more than 2 orders, is also achieved because of bigger bandgap of SiO2 in HGD. Consequently, this structure takes advantage of higher thermal conductivity and bigger bandgap of SiO2, and higher permittivity of HfO2 for improving SHEs and gate leakage current.
引用
收藏
页码:36 / 41
页数:6
相关论文
共 50 条
  • [21] Corner effects in double-gate/gate-all-around MOSFETs
    Hou Xiao-Yu
    Zhou Fa-Long
    Huang Ru
    Zhang Xing
    [J]. CHINESE PHYSICS, 2007, 16 (03): : 812 - 816
  • [22] RF and noise model of gate-all-around MOSFETs
    Lazaro, A.
    Iniguez, B.
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2008, 23 (07)
  • [23] Design optimization of gate-all-around (GAA) MOSFETs
    Song, JY
    Choi, WY
    Park, JH
    Lee, JD
    Park, BG
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2006, 5 (03) : 186 - 191
  • [24] Comparative analysis of heavy ions and alpha particles impact on gate-all-around TFETs and gate-all-around MOSFETs
    Kumar, Pankaj
    Koley, Kalyan
    Kumar, Subindu
    [J]. MICRO AND NANOSTRUCTURES, 2024, 192
  • [25] Self-Heating Effect and Characteristic Variability of Gate-All-Around Silicon Nanowire Transistors for Highly-Scaled CMOS Technology (invited)
    Huang, R.
    Wang, R. S.
    Zhuge, J.
    Yu, T.
    Ai, Y. J.
    Fan, C.
    Pu, S. S.
    Zou, J. B.
    Wang, Y. Y.
    [J]. 2010 IEEE INTERNATIONAL SOI CONFERENCE, 2010,
  • [26] Structure effects in the gate-all-around silicon nanowire MOSFETs
    Liang, Gengchiau
    [J]. EDSSC: 2007 IEEE INTERNATIONAL CONFERENCE ON ELECTRON DEVICES AND SOLID-STATE CIRCUITS, VOLS 1 AND 2, PROCEEDINGS, 2007, : 129 - 132
  • [27] An analytical mobility model for square Gate-All-Around MOSFETs
    Tienda-Luna, I. M.
    Roldan, J. B.
    Ruiz, F. G.
    Blanque, C. M.
    Gamiz, F.
    [J]. SOLID-STATE ELECTRONICS, 2013, 90 : 18 - 22
  • [28] High Frequency and Noise Model of Gate-All-Around MOSFETs
    Nae, B.
    Lazaro, A.
    Iniguez, B.
    [J]. PROCEEDINGS OF THE 2009 SPANISH CONFERENCE ON ELECTRON DEVICES, 2009, : 112 - 115
  • [29] Design study of the gate-all-around silicon nanosheet MOSFETs
    Lee, Yongwoo
    Park, Geon-Hwi
    Choi, Bongsik
    Yoon, Jinsu
    Kim, Hyo-Jin
    Kim, Dae Hwan
    Kim, Dong Myong
    Kang, Min-Ho
    Choi, Sung-Jin
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2020, 35 (03)
  • [30] Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric
    Rahimian, Morteza
    Fathipour, Morteza
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 63 : 142 - 152