Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness

被引:10
|
作者
Blanca, Antonio [1 ]
Gheissari, Reza [2 ,3 ]
机构
[1] Penn State Univ, Dept CSE, University Pk, PA 16802 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, EECS, Berkeley, CA 94720 USA
关键词
SWENDSEN-WANG; PHASE-TRANSITION; GLAUBER DYNAMICS; MODEL;
D O I
10.1007/s00220-021-04093-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish rapid mixing of the random-cluster Glauber dynamics on random Delta-regular graphs for all q >= 1 and p<pu(q,Delta), where the threshold pu(q,Delta) corresponds to a uniqueness/non-uniqueness phase transition for the random-cluster model on the (infinite) Delta-regular tree. It is expected that this threshold is sharp, and for q>2 the Glauber dynamics on random Delta-regular graphs undergoes an exponential slowdown at pu(q,Delta). More precisely, we show that for every q >= 1, Delta >= 3, and p<pu(q,Delta), with probability 1-o(1) over the choice of a random Delta-regular graph on n vertices, the Glauber dynamics for the random-cluster model has Theta(nlogn) mixing time. As a corollary, we deduce fast mixing of the Swendsen-Wang dynamics for the Potts model on random Delta-regular graphs for every q >= 2, in the tree uniqueness region. Our proof relies on a sharp bound on the "shattering time", i.e., the number of steps required to break up any configuration into O(logn) sized clusters. This is established by analyzing a delicate and novel iterative scheme to simultaneously reveal the underlying random graph with clusters of the Glauber dynamics configuration on it, at a given time.
引用
收藏
页码:1243 / 1287
页数:45
相关论文
共 50 条
  • [1] Random-Cluster Dynamics on Random Regular Graphs in Tree Uniqueness
    Antonio Blanca
    Reza Gheissari
    Communications in Mathematical Physics, 2021, 386 : 1243 - 1287
  • [2] SAMPLING IN UNIQUENESS FROM THE POTTS AND RANDOM-CLUSTER MODELS ON RANDOM REGULAR GRAPHS
    Blanca, Antonio
    Galanis, Andreas
    Goldberg, Leslie Ann
    Stefankovic, Daniel
    Vigoda, Eric
    Yang, Kuan
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2020, 34 (01) : 742 - 793
  • [3] The stochastic random-cluster process and the uniqueness of random-cluster measures
    Grimmett, G
    ANNALS OF PROBABILITY, 1995, 23 (04): : 1461 - 1510
  • [4] SAMPLING FROM POTTS ON RANDOM GRAPHS OF UNBOUNDED DEGREE VIA RANDOM-CLUSTER DYNAMICS
    Blanca, Antonio
    Gheissari, Reza
    ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 4997 - 5049
  • [5] The random-cluster model on a homogeneous tree
    Haggstrom, O
    PROBABILITY THEORY AND RELATED FIELDS, 1996, 104 (02) : 231 - 253
  • [6] Universality for the random-cluster model on isoradial graphs
    Duminil-Copin, Hugo
    Li, Jhih-Huang
    Manolescu, Ioan
    ELECTRONIC JOURNAL OF PROBABILITY, 2018, 23
  • [7] RANDOM-CLUSTER MODEL .3. SIMPLE RANDOM-CLUSTER MODEL
    FORTUIN, CM
    PHYSICA, 1972, 59 (04): : 545 - &
  • [8] Single-cluster dynamics for the random-cluster model
    Deng, Youjin
    Qian, Xiaofeng
    Bloete, Henk W. J.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [9] Random-cluster dynamics in Z2
    Blanca, Antonio
    Sinclair, Alistair
    PROBABILITY THEORY AND RELATED FIELDS, 2017, 168 (3-4) : 821 - 847
  • [10] Spatial mixing and the random-cluster dynamics on lattices
    Gheissari, Reza
    Sinclair, Alistair
    PROCEEDINGS OF THE 2023 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2023, : 4606 - 4621