Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study

被引:29
|
作者
Yamashita, Rikiya [1 ]
Mittendorf, Amber [2 ]
Zhu, Zhe [2 ]
Fowler, Kathryn J. [3 ]
Santillan, Cynthia S. [3 ]
Sirlin, Claude B. [3 ]
Bashir, Mustafa R. [2 ,4 ,5 ]
Do, Richard K. G. [1 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Radiol, Body Imaging Serv, 1275 York Ave, New York, NY 10065 USA
[2] Duke Univ, Med Ctr, Dept Radiol, Ctr Adv Magnet Resonance Dev, Durham, NC 27710 USA
[3] Univ Calif San Diego, Dept Radiol, Liver Imaging Grp, San Diego, CA 92103 USA
[4] Duke Univ, Med Ctr, Ctr Adv Magnet Resonance Dev, Durham, NC USA
[5] Duke Univ, Med Ctr, Dept Med, Div Gastroenterol, Durham, NC 27710 USA
基金
日本学术振兴会; 美国国家卫生研究院;
关键词
Hepatocellular carcinoma; Deep learning; X-ray computed tomography; Magnetic resonance imaging; HEPATOCELLULAR-CARCINOMA; ALGORITHM; RELIABILITY; VALIDATION; FEATURES;
D O I
10.1007/s00261-019-02306-7
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposeTo develop a deep convolutional neural network (CNN) model to categorize multiphase CT and MRI liver observations using the liver imaging reporting and data system (LI-RADS) (version 2014).MethodsA pre-existing dataset comprising 314 hepatic observations (163 CT, 151 MRI) with corresponding diameters and LI-RADS categories (LR-1-5) assigned in consensus by two LI-RADS steering committee members was used to develop two CNNs: pre-trained network with an input of triple-phase images (training with transfer learning) and custom-made network with an input of quadruple-phase images (training from scratch). The dataset was randomly split into training, validation, and internal test sets (70:15:15 split). The overall accuracy and area under receiver operating characteristic curve (AUROC) were assessed for categorizing LR-1/2, LR-3, LR-4, and LR-5. External validation was performed for the model with the better performance on the internal test set using two external datasets (EXT-CT and EXT-MR: 68 and 44 observations, respectively).ResultsThe transfer learning model outperformed the custom-made model: overall accuracy of 60.4% and AUROCs of 0.85, 0.90, 0.63, 0.82 for LR-1/2, LR-3, LR-4, LR-5, respectively. On EXT-CT, the model had an overall accuracy of 41.2% and AUROCs of 0.70, 0.66, 0.60, 0.76 for LR-1/2, LR-3, LR-4, LR-5, respectively. On EXT-MR, the model had an overall accuracy of 47.7% and AUROCs of 0.88, 0.74, 0.69, 0.79 for LR-1/2, LR-3, LR-4, LR-5, respectively.ConclusionOur study shows the feasibility of CNN for assigning LI-RADS categories from a relatively small dataset but highlights the challenges of model development and validation.
引用
收藏
页码:24 / 35
页数:12
相关论文
共 50 条
  • [1] Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study
    Rikiya Yamashita
    Amber Mittendorf
    Zhe Zhu
    Kathryn J. Fowler
    Cynthia S. Santillan
    Claude B. Sirlin
    Mustafa R. Bashir
    Richard K. G. Do
    Abdominal Radiology, 2020, 45 : 24 - 35
  • [2] Validation of Liver Imaging Reporting and Data System (LI-RADS) Version 2014
    Pecorelli, A.
    Nani, R.
    Sala, F.
    Pinelli, D.
    De Giorgio, M.
    Magini, G.
    Colledan, M.
    Fagiuoli, S.
    Sironi, S.
    DIGESTIVE AND LIVER DISEASE, 2017, 49 (01) : E49 - E49
  • [3] Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm
    An, Chansik
    Rakhmonova, Gulbahor
    Choi, Jin-Young
    Kim, Myeong-Jin
    CLINICAL AND MOLECULAR HEPATOLOGY, 2016, 22 (02) : 296 - 307
  • [4] Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients
    Chernyak, Victoria
    Fowler, Kathryn J.
    Kamaya, Aya
    Kielar, Ania Z.
    Elsayes, Khaled M.
    Bashir, Mustafa R.
    Kono, Yuko
    Do, Richard K.
    Mitchell, Donald G.
    Singal, Amit G.
    Tang, An
    Sirlin, Claude B.
    RADIOLOGY, 2018, 289 (03) : 816 - 830
  • [5] The value of the apparent diffusion coefficient value in the Liver Imaging Reporting and Data System (LI-RADS) version 2018
    Saleh, Gehad
    Razek, Ahmed Khalek Abdel
    El-Serougy, Lamiaa
    Shabana, Walaa
    El-Wahab, Rihame
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E43 - E50
  • [6] LI-RADS (Liver Imaging Reporting and Data System): Summary, Discussion, and Consensus of the LI-RADS Management Working Group and Future Directions
    Mitchell, Donald G.
    Bruix, Jordi
    Sherman, Morris
    Sirlin, Claude B.
    HEPATOLOGY, 2015, 61 (03) : 1056 - 1065
  • [7] LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS) IN PATIENTS AT HIGH RISK FOR HEPATOCELLULAR CARCINOMA
    McCullar, B. P.
    Appelbaum, A.
    Phillips, J. K.
    Weir, A.
    Waters, B.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2018, 66 (02) : 416 - 416
  • [8] Contrast-enhanced ultrasound: Liver Imaging Reporting and Data System (CEUS LI-RADS)
    Dietrich, Christoph F.
    Potthoff, Andrej
    Helmberger, Thomas
    Ignee, Andre
    Willmann, Juergen K.
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2018, 56 (05): : 499 - 506
  • [9] Liver Imaging Reporting and Data System v2014 With Gadoxetate Disodium-Enhanced Magnetic Resonance Imaging Validation of LI-RADS Category 4 and 5 Criteria
    Choi, Sang Hyun
    Byun, Jae Ho
    Kim, So Yeon
    Lee, So Jung
    Won, Hyung Jin
    Shin, Yong Moon
    Kim, Pyo Nyun
    INVESTIGATIVE RADIOLOGY, 2016, 51 (08) : 483 - 490
  • [10] Validation of Liver Imaging Reporting and Data System 2017 (LI-RADS) Criteria for Imaging Diagnosis of Hepatocellular Carcinoma
    Kierans, Andrea S.
    Makkar, Jasnit
    Guniganti, Preethi
    Cornman-Homonoff, Joshua
    Lee, Michael J.
    Pittman, Meredith
    Askin, Gulce
    Hecht, Elizabeth M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (07) : E205 - E215