Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study

被引:0
|
作者
Rikiya Yamashita
Amber Mittendorf
Zhe Zhu
Kathryn J. Fowler
Cynthia S. Santillan
Claude B. Sirlin
Mustafa R. Bashir
Richard K. G. Do
机构
[1] Memorial Sloan Kettering Cancer Center,Department of Radiology, Body Imaging Service
[2] Duke University Medical Center,Department of Radiology, Center for Advanced Magnetic Resonance Development
[3] University of California San Diego,Liver Imaging Group, Department of Radiology
[4] Duke University Medical Center,Center for Advanced Magnetic Resonance Development
[5] Duke University Medical Center,Division of Gastroenterology, Department of Medicine
来源
Abdominal Radiology | 2020年 / 45卷
关键词
Hepatocellular carcinoma; Deep learning; X-ray computed tomography; Magnetic resonance imaging;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:24 / 35
页数:11
相关论文
共 50 条
  • [1] Deep convolutional neural network applied to the liver imaging reporting and data system (LI-RADS) version 2014 category classification: a pilot study
    Yamashita, Rikiya
    Mittendorf, Amber
    Zhu, Zhe
    Fowler, Kathryn J.
    Santillan, Cynthia S.
    Sirlin, Claude B.
    Bashir, Mustafa R.
    Do, Richard K. G.
    ABDOMINAL RADIOLOGY, 2020, 45 (01) : 24 - 35
  • [2] Validation of Liver Imaging Reporting and Data System (LI-RADS) Version 2014
    Pecorelli, A.
    Nani, R.
    Sala, F.
    Pinelli, D.
    De Giorgio, M.
    Magini, G.
    Colledan, M.
    Fagiuoli, S.
    Sironi, S.
    DIGESTIVE AND LIVER DISEASE, 2017, 49 (01) : E49 - E49
  • [3] Liver imaging reporting and data system (LI-RADS) version 2014: understanding and application of the diagnostic algorithm
    An, Chansik
    Rakhmonova, Gulbahor
    Choi, Jin-Young
    Kim, Myeong-Jin
    CLINICAL AND MOLECULAR HEPATOLOGY, 2016, 22 (02) : 296 - 307
  • [4] Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients
    Chernyak, Victoria
    Fowler, Kathryn J.
    Kamaya, Aya
    Kielar, Ania Z.
    Elsayes, Khaled M.
    Bashir, Mustafa R.
    Kono, Yuko
    Do, Richard K.
    Mitchell, Donald G.
    Singal, Amit G.
    Tang, An
    Sirlin, Claude B.
    RADIOLOGY, 2018, 289 (03) : 816 - 830
  • [5] The value of the apparent diffusion coefficient value in the Liver Imaging Reporting and Data System (LI-RADS) version 2018
    Saleh, Gehad
    Razek, Ahmed Khalek Abdel
    El-Serougy, Lamiaa
    Shabana, Walaa
    El-Wahab, Rihame
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E43 - E50
  • [6] LI-RADS (Liver Imaging Reporting and Data System): Summary, Discussion, and Consensus of the LI-RADS Management Working Group and Future Directions
    Mitchell, Donald G.
    Bruix, Jordi
    Sherman, Morris
    Sirlin, Claude B.
    HEPATOLOGY, 2015, 61 (03) : 1056 - 1065
  • [7] LIVER IMAGING REPORTING AND DATA SYSTEM (LI-RADS) IN PATIENTS AT HIGH RISK FOR HEPATOCELLULAR CARCINOMA
    McCullar, B. P.
    Appelbaum, A.
    Phillips, J. K.
    Weir, A.
    Waters, B.
    JOURNAL OF INVESTIGATIVE MEDICINE, 2018, 66 (02) : 416 - 416
  • [8] Contrast-enhanced ultrasound: Liver Imaging Reporting and Data System (CEUS LI-RADS)
    Dietrich, Christoph F.
    Potthoff, Andrej
    Helmberger, Thomas
    Ignee, Andre
    Willmann, Juergen K.
    ZEITSCHRIFT FUR GASTROENTEROLOGIE, 2018, 56 (05): : 499 - 506
  • [9] Liver Imaging Reporting and Data System v2014 With Gadoxetate Disodium-Enhanced Magnetic Resonance Imaging Validation of LI-RADS Category 4 and 5 Criteria
    Choi, Sang Hyun
    Byun, Jae Ho
    Kim, So Yeon
    Lee, So Jung
    Won, Hyung Jin
    Shin, Yong Moon
    Kim, Pyo Nyun
    INVESTIGATIVE RADIOLOGY, 2016, 51 (08) : 483 - 490
  • [10] Validation of Liver Imaging Reporting and Data System 2017 (LI-RADS) Criteria for Imaging Diagnosis of Hepatocellular Carcinoma
    Kierans, Andrea S.
    Makkar, Jasnit
    Guniganti, Preethi
    Cornman-Homonoff, Joshua
    Lee, Michael J.
    Pittman, Meredith
    Askin, Gulce
    Hecht, Elizabeth M.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (07) : E205 - E215