Atomically thin micas as proton-conducting membranes

被引:51
|
作者
Mogg, L. [1 ,2 ]
Hao, G. -P. [1 ,3 ]
Zhang, S. [1 ,4 ]
Bacaksiz, C. [5 ]
Zou, Y. -C. [6 ]
Haigh, S. J. [6 ]
Peeters, F. M. [5 ]
Geim, A. K. [1 ,2 ]
Lozada-Hidalgo, M. [1 ,2 ]
机构
[1] Univ Manchester, Natl Graphene Inst, Manchester, Lancs, England
[2] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England
[3] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian, Peoples R China
[4] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin, Peoples R China
[5] Univ Antwerp, Dept Fys, Antwerp, Belgium
[6] Univ Manchester, Sch Mat, Manchester, Lancs, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EXCHANGE; ADSORPTION; INTERFACE; TRANSPORT; SURFACE; STATE; IONS;
D O I
10.1038/s41565-019-0536-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons(1,2). For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons(1). This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials(3), which extends from similar to 100 degrees C to 500 degrees C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm(-2) at 500 degrees C, well above the current requirements for the industry roadmap(4). We attribute the fast proton permeation to similar to 5-angstrom-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals(5) with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
引用
收藏
页码:962 / +
页数:6
相关论文
共 50 条
  • [1] Atomically thin micas as proton-conducting membranes
    L. Mogg
    G.-P. Hao
    S. Zhang
    C. Bacaksiz
    Y.-C. Zou
    S. J. Haigh
    F. M. Peeters
    A. K. Geim
    M. Lozada-Hidalgo
    [J]. Nature Nanotechnology, 2019, 14 : 962 - 966
  • [2] Proton-conducting hydrogel membranes
    Przyluski, J
    Poltarzewski, Z
    Wieczorek, W
    [J]. POLYMER, 1998, 39 (18) : 4343 - 4347
  • [3] Composite proton-conducting membranes with nanodiamonds
    Kulvelis, Yu. V.
    Primachenko, O. N.
    Odinokov, A. S.
    Shvidchenko, A. V.
    Bayramukov, V. Yu.
    Gofman, I. V.
    Lebedev, V. T.
    Ivanchev, S. S.
    Vul, A. Ya.
    Kuklin, A. I.
    Wu, B.
    [J]. FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) : 140 - 146
  • [4] Composite proton-conducting membranes for PEMFCs
    Mustarelli, P.
    Carollo, A.
    Grandi, S.
    Quartarone, E.
    Tomasi, C.
    Leonardi, S.
    Magistris, A.
    [J]. FUEL CELLS, 2007, 7 (06) : 441 - 446
  • [5] Novel proton-conducting polymer inclusion membranes
    Lilia Ocampo, Ana
    Cesar Aguilar, Julio
    de San Miguel, Eduardo Rodriguez
    Monroy, Minerva
    Roquero, Pedro
    de Gyves, Josefina
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2009, 326 (02) : 382 - 387
  • [6] PROTON-CONDUCTING MEMBRANES BASED ON COPOLYMER COMPOSITES
    Myachina, G. F.
    Ermakova, T. G.
    Kuznetsova, N. P.
    Volkova, L. I.
    Trofimov, B. A.
    Mognonov, D. M.
    [J]. CARBON NANOMATERIALS IN CLEAN ENERGY HYDROGEN SYSTEMS, 2008, : 379 - +
  • [7] Proton-conducting membranes based on multicomponent copolymers
    Ivanchev, S. S.
    Primachenko, O. N.
    Pavlyuchenko, V. N.
    Khaikin, S. Ya.
    Trunov, V. A.
    [J]. RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2008, 81 (07) : 1213 - 1219
  • [8] Proton-conducting membranes based on multicomponent copolymers
    S. S. Ivanchev
    O. N. Primachenko
    V. N. Pavlyuchenko
    S. Ya. Khaikin
    V. A. Trunov
    [J]. Russian Journal of Applied Chemistry, 2008, 81 : 1213 - 1219
  • [9] Complex impedance studies of proton-conducting membranes
    Edmondson, CA
    Stallworth, PE
    Chapman, ME
    Fontanella, JJ
    Wintersgill, MC
    Chung, SH
    Greenbaum, SG
    [J]. SOLID STATE IONICS, 2000, 135 (1-4) : 419 - 423
  • [10] Proton-conducting membranes based on protic ionic liquids
    Fernicola, Alessandra
    Panero, Stefania
    Scrosati, Bruno
    [J]. JOURNAL OF POWER SOURCES, 2008, 178 (02) : 591 - 595