Atomically thin micas as proton-conducting membranes

被引:56
|
作者
Mogg, L. [1 ,2 ]
Hao, G. -P. [1 ,3 ]
Zhang, S. [1 ,4 ]
Bacaksiz, C. [5 ]
Zou, Y. -C. [6 ]
Haigh, S. J. [6 ]
Peeters, F. M. [5 ]
Geim, A. K. [1 ,2 ]
Lozada-Hidalgo, M. [1 ,2 ]
机构
[1] Univ Manchester, Natl Graphene Inst, Manchester, Lancs, England
[2] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England
[3] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian, Peoples R China
[4] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin, Peoples R China
[5] Univ Antwerp, Dept Fys, Antwerp, Belgium
[6] Univ Manchester, Sch Mat, Manchester, Lancs, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EXCHANGE; ADSORPTION; INTERFACE; TRANSPORT; SURFACE; STATE; IONS;
D O I
10.1038/s41565-019-0536-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons(1,2). For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons(1). This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials(3), which extends from similar to 100 degrees C to 500 degrees C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm(-2) at 500 degrees C, well above the current requirements for the industry roadmap(4). We attribute the fast proton permeation to similar to 5-angstrom-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals(5) with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
引用
收藏
页码:962 / +
页数:6
相关论文
共 50 条
  • [41] Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers
    Rikukawa, M
    Sanui, K
    PROGRESS IN POLYMER SCIENCE, 2000, 25 (10) : 1463 - 1502
  • [42] Thermal properties of proton-conducting radiation-grafted membranes
    Guersel, Selmiye Alkan
    Schneider, Julian
    Ben Youcef, Hicharn
    Wokaun, Alexander
    Scherer, Guenther G.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 108 (06) : 3577 - 3585
  • [43] Hybrid proton-conducting membranes as fuel cells solid polyelectrolytes
    Blazquez, J. Alberto
    Mecerreyes, David
    Miguel, Oscar
    Rodriguez, Javier
    Cendoya, Ione
    Ajuria, Jon
    Iruin, Juan J.
    Santos, J. Ignacio
    Marestin, Catherine
    Mercier, Regis
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2006, 3 (03): : 308 - 311
  • [44] Silicotungstic acid/organically modified silane proton-conducting membranes
    Stangar, UL
    Orel, B
    Vince, J
    Jovanovski, V
    Spreizer, H
    Vuk, AS
    Hocevar, S
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2005, 9 (02) : 106 - 113
  • [45] A facile synthesis of proton-conducting organic-inorganic membranes
    Ibrahim, Ajfane Cheik
    Meyer, Mathieu
    Devautour-Vinot, Sabine
    Habas, Jean-Pierre
    Clement, Sebastien
    Naoufal, Daoud
    Mehdi, Ahmad
    JOURNAL OF MEMBRANE SCIENCE, 2014, 470 : 189 - 196
  • [46] Proton-conducting oxides
    Kreuer, KD
    ANNUAL REVIEW OF MATERIALS RESEARCH, 2003, 33 : 333 - 359
  • [47] Nanoporuous anatase thin films as fast proton-conducting materials
    Colomer, MT
    ADVANCED MATERIALS, 2006, 18 (03) : 371 - +
  • [48] Ultrathin electron and proton-conducting membranes for nanoscale integrated artificial photosystems
    Frei, Heinz
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14): : 3213 - 3231
  • [49] Proton-conducting membranes based on Nafion® synthesized by using nanodiamond platform
    Lebedev, Vasily T.
    V. Kulvelis, Yuri
    Odinokov, Alexey S.
    Primachenko, Oleg N.
    V. Kononova, Svetlana
    Ivan'kova, Elena M.
    Orlova, Vera A.
    Yevlampieva, Natalia P.
    Marinenko, Elena A.
    V. Gofman, Iosif
    V. Shvidchenko, Alexandr
    Peters, Georgy S.
    JOURNAL OF MEMBRANE SCIENCE LETTERS, 2024, 4 (01):
  • [50] Synthesis of a Polymerizable Fluorosurfactant for the Construction of Stable Nanostructured Proton-Conducting Membranes
    Wadekat, Mohan N.
    Jager, Wolter F.
    Sudholter, Ernst R.
    Picken, Stephen J.
    JOURNAL OF ORGANIC CHEMISTRY, 2010, 75 (20): : 6814 - 6819