Atomically thin micas as proton-conducting membranes

被引:56
|
作者
Mogg, L. [1 ,2 ]
Hao, G. -P. [1 ,3 ]
Zhang, S. [1 ,4 ]
Bacaksiz, C. [5 ]
Zou, Y. -C. [6 ]
Haigh, S. J. [6 ]
Peeters, F. M. [5 ]
Geim, A. K. [1 ,2 ]
Lozada-Hidalgo, M. [1 ,2 ]
机构
[1] Univ Manchester, Natl Graphene Inst, Manchester, Lancs, England
[2] Univ Manchester, Sch Phys & Astron, Manchester, Lancs, England
[3] Dalian Univ Technol, Sch Chem Engn, State Key Lab Fine Chem, Dalian, Peoples R China
[4] Tianjin Univ, Sch Chem Engn & Technol, Collaborat Innovat Ctr Chem Sci & Engn, Key Lab Green Chem Technol,Minist Educ, Tianjin, Peoples R China
[5] Univ Antwerp, Dept Fys, Antwerp, Belgium
[6] Univ Manchester, Sch Mat, Manchester, Lancs, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会;
关键词
EXCHANGE; ADSORPTION; INTERFACE; TRANSPORT; SURFACE; STATE; IONS;
D O I
10.1038/s41565-019-0536-5
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Monolayers of graphene and hexagonal boron nitride (hBN) are highly permeable to thermal protons(1,2). For thicker two-dimensional (2D) materials, proton conductivity diminishes exponentially, so that, for example, monolayer MoS2 that is just three atoms thick is completely impermeable to protons(1). This seemed to suggest that only one-atom-thick crystals could be used as proton-conducting membranes. Here, we show that few-layer micas that are rather thick on the atomic scale become excellent proton conductors if native cations are ion-exchanged for protons. Their areal conductivity exceeds that of graphene and hBN by one to two orders of magnitude. Importantly, ion-exchanged 2D micas exhibit this high conductivity inside the infamous gap for proton-conducting materials(3), which extends from similar to 100 degrees C to 500 degrees C. Areal conductivity of proton-exchanged monolayer micas can reach above 100 S cm(-2) at 500 degrees C, well above the current requirements for the industry roadmap(4). We attribute the fast proton permeation to similar to 5-angstrom-wide tubular channels that perforate micas' crystal structure, which, after ion exchange, contain only hydroxyl groups inside. Our work indicates that there could be other 2D crystals(5) with similar nanometre-scale channels, which could help close the materials gap in proton-conducting applications.
引用
收藏
页码:962 / +
页数:6
相关论文
共 50 条
  • [21] Proton-conducting zirconium phosphate glass thin films
    Kim, Jong-Eon
    Park, Sung Bum
    Park, Yong-il
    SOLID STATE IONICS, 2012, 216 : 15 - 18
  • [22] Proton-Conducting Membranes Based on Modified Poly(vinyl chloride)
    Shaglaeva, N. S.
    Sultangareev, R. G.
    Orkhokova, E. A.
    Prozorova, G. F.
    Dmitrieva, G. V.
    Dambinova, A. S.
    Stenina, I. A.
    Yaroslavtsev, A. B.
    PETROLEUM CHEMISTRY, 2011, 51 (08) : 620 - 625
  • [23] Proton-conducting polymer membranes for direct methanol fuel cells
    Won, D
    Kang, YS
    MACROMOLECULAR SYMPOSIA, 2003, 204 : 79 - 91
  • [24] Thermal properties of proton-conducting radiation-grafted membranes
    Gürsel, Selmiye Alkan
    Schneider, Julian
    Ben Youcef, Hicham
    Wokaun, Alexander
    Scherer, Günther G.
    Journal of Applied Polymer Science, 2008, 108 (06): : 3577 - 3585
  • [25] New Proton-Conducting Membranes Based on Phosphorylated Polybenzimidazole and Silica
    A. A. Lysova
    A. B. Yaroslavtsev
    Inorganic Materials, 2019, 55 : 470 - 476
  • [26] Thermodynamic Insights for Electrochemical Hydrogen Compression with Proton-Conducting Membranes
    Kee, Benjamin L.
    Curran, David
    Zhu, Huayang
    Braun, Robert J.
    DeCaluwe, Steven C.
    Kee, Robert J.
    Ricote, Sandrine
    MEMBRANES, 2019, 9 (07)
  • [27] Preparation and characterization of proton-conducting crosslinked diblock copolymer membranes
    Lee, Do Kyoung
    Kim, Yong Woo
    Choi, Jin Kyu
    Min, Byoung Ryul
    Kim, Jong Hak
    JOURNAL OF APPLIED POLYMER SCIENCE, 2008, 107 (02) : 819 - 824
  • [28] Electrolytic proton-conducting membranes based on aromatic condensation polymers
    Rusanov, AL
    Likhachev, DY
    Müllen, K
    USPEKHI KHIMII, 2002, 71 (09) : 862 - 877
  • [29] Silicotungstic acid/organically modified silane proton-conducting membranes
    U. Lavrenčič Štangar
    B. Orel
    J. Vince
    V. Jovanovski
    H. Spreizer
    A. Šurca Vuk
    S. Hočevar
    Journal of Solid State Electrochemistry, 2005, 9 : 106 - 113
  • [30] Proton-conducting membranes based on modified poly(vinyl chloride)
    N. S. Shaglaeva
    R. G. Sultangareev
    E. A. Orkhokova
    G. F. Prozorova
    G. V. Dmitrieva
    A. S. Dambinova
    I. A. Stenina
    A. B. Yaroslavtsev
    Petroleum Chemistry, 2011, 51 : 620 - 625