Renyi Generalization of the Accessible Entanglement Entropy

被引:83
|
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    PHYSICAL REVIEW D, 2014, 89 (12):
  • [32] A generalization of a result of A. Renyi
    Marcu, Danut
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2008, 11 (01): : 13 - 17
  • [33] Stabilizer Renyi Entropy
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Hamma, Alioscia
    PHYSICAL REVIEW LETTERS, 2022, 128 (05)
  • [34] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [35] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [36] RENYI ENTROPY AND RECURRENCE
    Ko, Milton
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06) : 2403 - 2421
  • [37] On Homophony and Renyi Entropy
    Pimentel, Tiago
    Meister, Clara
    Teufel, Simone
    Cotterell, Ryan
    2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8284 - 8293
  • [38] On the Conditional Renyi Entropy
    Fehr, Serge
    Berens, Stefan
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 6801 - 6810
  • [39] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [40] On Renyi Permutation Entropy
    Gutjahr, Tim
    Keller, Karsten
    ENTROPY, 2022, 24 (01)