Stabilizer Renyi Entropy

被引:63
|
作者
Leone, Lorenzo [1 ]
Oliviero, Salvatore F. E. [1 ]
Hamma, Alioscia [1 ,2 ]
机构
[1] Univ Massachusetts, Phys Dept, Boston, MA 02125 USA
[2] Univ Grenoble Alpes, LPMMC, CNRS, F-38000 Grenoble, France
基金
美国国家科学基金会;
关键词
QUANTUM; ENTANGLEMENT; ALGORITHMS;
D O I
10.1103/PhysRevLett.128.050402
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce a novel measure for the quantum property of "nonstabilizerness"-commonly known as "magic"-by considering the Renyi entropy of the probability distribution associated to a pure quantum state given by the square of the expectation value of Pauli strings in that state. We show that this is a good measure of nonstabilizerness from the point of view of resource theory and show bounds with other known measures. The stabilizer Renyi entropy has the advantage of being easily computable because it does not need a minimization procedure. We present a protocol for an experimental measurement by randomized measurements. We show that the nonstabilizerness is intimately connected to out-of-time-order correlation functions and that maximal levels of nonstabilizerness are necessary for quantum chaos.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    [J]. INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [2] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [3] Fractional Renyi entropy
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [4] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    [J]. PHYSICAL REVIEW D, 2014, 89 (12):
  • [5] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [6] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [7] RENYI ENTROPY AND RECURRENCE
    Ko, Milton
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06): : 2403 - 2421
  • [8] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [9] On Homophony and Renyi Entropy
    Pimentel, Tiago
    Meister, Clara
    Teufel, Simone
    Cotterell, Ryan
    [J]. 2021 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2021), 2021, : 8284 - 8293
  • [10] On the Conditional Renyi Entropy
    Fehr, Serge
    Berens, Stefan
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 6801 - 6810