Fractional Renyi entropy

被引:14
|
作者
Tenreiro Machado, J. A. [1 ]
Lopes, Antonio M. [2 ]
机构
[1] Polytech Porto, Inst Engn, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[2] Univ Porto, UISPA LAETA INEGI, Fac Engn, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2019年 / 134卷 / 05期
关键词
STATISTICAL-MECHANICS; INFORMATION-THEORY; DIFFUSION; MODEL; LAW;
D O I
10.1140/epjp/i2019-12554-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
.This paper proposes two novel expressions for the Renyi entropy inspired in the concepts of fractional calculus. The new formulations are applied to the Bernoulli distribution, the Dow Jones Industrial Average time series and data from researcher citation profiles. The results are compared with those provided by other fractional entropies. The tuning by means of the fractional order allows a superior sensitivity of the entropy to the characteristics exhibited by each distinct type of data. Indeed, the additional freedom provided by the two parameters of the new Renyi formulations is useful when characterizing assertively real world data representative of complex systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Tsallis and Renyi entropies in fractional diffusion and entropy production
    Essex, C
    Schulzky, C
    Franz, A
    Hoffmann, KH
    [J]. PHYSICA A, 2000, 284 (1-4): : 299 - 308
  • [2] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    [J]. INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [3] Renyi Entropy and Fractional Order Mechanics for Predicting Complex Mechanics of Materials
    Pahari, Basanta Raj
    Oates, William
    [J]. BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XVI, 2022, 12044
  • [4] Fractional Renyi Entropy Image Enhancement for Deep Segmentation of Kidney MRI
    Jalab, Hamid A.
    Al-Shamasneh, Ala'a R.
    Shaiba, Hadil
    Ibrahim, Rabha W.
    Baleanu, Dumitru
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 67 (02): : 2061 - 2075
  • [5] Stabilizer Renyi Entropy
    Leone, Lorenzo
    Oliviero, Salvatore F. E.
    Hamma, Alioscia
    [J]. PHYSICAL REVIEW LETTERS, 2022, 128 (05)
  • [6] On the Polarization of Renyi Entropy
    Zheng, Mengfan
    Liu, Ling
    Ling, Cong
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2094 - 2098
  • [7] Renyi entropy and geometry
    Lee, Jeongseog
    McGough, Lauren
    Safdi, Benjamin R.
    [J]. PHYSICAL REVIEW D, 2014, 89 (12):
  • [8] Supersymmetric Renyi entropy
    Nishioka, Tatsuma
    Yaakov, Itamar
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2013, (10):
  • [9] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    [J]. PHYSICAL REVIEW A, 2016, 93 (02)
  • [10] RENYI ENTROPY AND RECURRENCE
    Ko, Milton
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2013, 33 (06): : 2403 - 2421