Entropy Power Inequality for the Renyi Entropy

被引:57
|
作者
Bobkov, Sergey G. [1 ]
Chistyakov, Gennadiy P. [2 ]
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
基金
美国国家科学基金会;
关键词
Renyi entropy; entropy power inequality; YOUNGS-INEQUALITY; CONVERSE; PROOF;
D O I
10.1109/TIT.2014.2383379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The classical entropy power inequality is extended to the Renyi entropy. We also discuss the question of the existence of the entropy for sums of independent random variables.
引用
收藏
页码:708 / 714
页数:7
相关论文
共 50 条
  • [1] Renyi entropy power inequality and a reverse
    Li, Jiange
    [J]. STUDIA MATHEMATICA, 2018, 242 (03) : 303 - 319
  • [2] On the Entropy Power Inequality for the Renyi Entropy of Order [0,1]
    Marsiglietti, Arnaud
    Melbourne, James
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (03) : 1387 - 1396
  • [3] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293
  • [4] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693
  • [5] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (12) : 6800 - 6815
  • [6] Renyi Entropy Power and Normal Transport
    Rioul, Olivier
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 1 - 5
  • [7] A Generalization of the Concavity of Renyi Entropy Power
    Guo, Laigang
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    [J]. ENTROPY, 2021, 23 (12)
  • [8] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    [J]. INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [9] An inequality on Renyi entropy and variational distance between distributions
    Yang, B
    Wang, WW
    Wang, YM
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2002, 11 (01) : 130 - 133
  • [10] Infinity-Renyi Entropy Power Inequalities
    Xu, Peng
    Melbourne, James
    Madiman, Mokshay
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,