A Generalization of the Concavity of Renyi Entropy Power

被引:3
|
作者
Guo, Laigang [1 ]
Yuan, Chun-Ming [2 ,3 ]
Gao, Xiao-Shan [2 ,3 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, KLMM, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
北京市自然科学基金;
关键词
Renyi entropy; entropy power inequality; nonlinear heat equation; SIMPLE PROOF; INFORMATION; INEQUALITY;
D O I
10.3390/e23121593
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, Savare-Toscani proved that the Renyi entropy power of general probability densities solving the p-nonlinear heat equation in R n is a concave function of time under certain conditions of three parameters n , p , mu , which extends Costa's concavity inequality for Shannon's entropy power to the Renyi entropy power. In this paper, we give a condition f ( n , p , mu ) of n , p , mu under which the concavity of the Renyi entropy power is valid. The condition f ( n , p , mu ) contains Savare-Toscani's condition as a special case and much more cases. Precisely, the points ( n , p , mu ) satisfying Savare-Toscani's condition consist of a two-dimensional subset of R (3) , and the points satisfying the condition f ( n , p , mu ) consist a three-dimensional subset of R (3) . Furthermore, f ( n , p , mu ) gives the necessary and sufficient condition in a certain sense. Finally, the conditions are obtained with a systematic approach.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693
  • [2] Self-Similar Solutions of Renyi's Entropy and the Concavity of Its Entropy Power
    Hatzinikitas, Agapitos N.
    [J]. ENTROPY, 2015, 17 (09): : 6056 - 6071
  • [3] Convexity/Concavity of Renyi Entropy and α-Mutual Information
    Ho, Siu-Wai
    Verdu, Sergio
    [J]. 2015 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2015, : 745 - 749
  • [4] The concavity of Renyi entropy power for the parabolic p-Laplace equations and applications
    Wang, Yu-Zhao
    Wang, Yan-Mei
    [J]. MANUSCRIPTA MATHEMATICA, 2019, 160 (3-4) : 509 - 522
  • [5] Renyi Generalization of the Accessible Entanglement Entropy
    Barghathi, Hatem
    Herdman, C. M.
    Del Maestro, Adrian
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [6] Reversal of Renyi Entropy Inequalities Under Log-Concavity
    Melbourne, James
    Tkocz, Tomasz
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (01) : 45 - 51
  • [7] Non-Hermitian Generalization of Renyi Entropy
    Li, Daili
    Zheng, Chao
    [J]. ENTROPY, 2022, 24 (11)
  • [8] A generalization of Renyi entropy for basic probability assignment
    Yu, Ran
    Deng, Yong
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) : 6991 - 7008
  • [9] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [10] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293