Renyi Generalization of the Accessible Entanglement Entropy

被引:83
|
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Entanglement Renyi α entropy
    Wang, Yu-Xin
    Mu, Liang-Zhu
    Vedral, Vlatko
    Fan, Heng
    PHYSICAL REVIEW A, 2016, 93 (02)
  • [2] Renyi entanglement entropy in fermionic chains
    Ares, Filiberto
    Esteve, Jose G.
    Falceto, Fernando
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (06)
  • [3] Diffusive scaling of Renyi entanglement entropy
    Zhou, Tianci
    Ludwig, Andreas W. W.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (03):
  • [4] A Generalization of the Concavity of Renyi Entropy Power
    Guo, Laigang
    Yuan, Chun-Ming
    Gao, Xiao-Shan
    ENTROPY, 2021, 23 (12)
  • [5] Universal Renyi entanglement entropy of quasiparticle excitations
    Zhang, Jiaju
    Rajabpour, M. A.
    EPL, 2021, 135 (06)
  • [6] Non-Hermitian Generalization of Renyi Entropy
    Li, Daili
    Zheng, Chao
    ENTROPY, 2022, 24 (11)
  • [7] Renyi entropy, stationarity, and entanglement of the conformal scalar
    Lee, Jeongseog
    Lewkowycz, Aitor
    Perlmutter, Eric
    Safdi, Benjamin R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (03):
  • [8] A generalization of Renyi entropy for basic probability assignment
    Yu, Ran
    Deng, Yong
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (19) : 6991 - 7008
  • [9] Lower and upper bounds for entanglement of Renyi-α entropy
    Song, Wei
    Chen, Lin
    Cao, Zhuo-Liang
    SCIENTIFIC REPORTS, 2016, 6
  • [10] Estimating the central charge from the Renyi entanglement entropy
    Bazavov, A.
    Meurice, Y.
    Tsai, S. -W.
    Unmuth-Yockey, J.
    Yang, Li-Ping
    Zhang, Jin
    PHYSICAL REVIEW D, 2017, 96 (03)