Renyi Generalization of the Accessible Entanglement Entropy

被引:83
|
作者
Barghathi, Hatem [1 ]
Herdman, C. M. [2 ]
Del Maestro, Adrian [1 ,3 ]
机构
[1] Univ Vermont, Dept Phys, Burlington, VT 05405 USA
[2] Middlebury Coll, Dept Phys, Middlebury, VT 05753 USA
[3] Univ Leipzig, Inst Theoret Phys, D-04103 Leipzig, Germany
基金
美国国家科学基金会;
关键词
MANY-BODY SYSTEM; QUANTUM; UNCERTAINTY; INFORMATION; OPERATORS;
D O I
10.1103/PhysRevLett.121.150501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Operationally accessible entanglement in bipartite systems of indistinguishable particles could be reduced due to restrictions on the allowed local operations as a result of particle number conservation. In order to quantify this effect, Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] introduced an operational measure of the von Neumann entanglement entropy. Motivated by advances in measuring Renyi entropies in quantum many-body systems subject to conservation laws, we derive a generalization of the operationally accessible entanglement that is both computationally and experimentally measurable. Using the Widom theorem, we investigate its scaling with the size of a spatial subregion for free fermions and find a logarithmically violated area law scaling, similar to the spatial entanglement entropy, with at most a double-log leading-order correction. A modification of the correlation matrix method confirms our findings in systems of up to 10(5) particles.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Improving entanglement and thermodynamic Renyi entropy measurements in quantum Monte Carlo
    Luitz, David J.
    Plat, Xavier
    Laflorencie, Nicolas
    Alet, Fabien
    PHYSICAL REVIEW B, 2014, 90 (12):
  • [22] Comment on 'Monogamy of multi-qubit entanglement using Renyi entropy'
    Yu, Long-Bao
    Zhang, Li-Hua
    Zhao, Jun-Long
    Tang, Yong-Sheng
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (08)
  • [23] Some properties of Renyi entropy and Renyi entropy rate
    Golshani, Leila
    Pasha, Einollah
    Yari, Gholamhossein
    INFORMATION SCIENCES, 2009, 179 (14) : 2426 - 2433
  • [24] Proof of a Conjectured 0-Renyi Entropy Inequality With Applications to Multipartite Entanglement
    Song, Zhiwei
    Chen, Lin
    Sun, Yize
    Hu, Mengyao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2385 - 2399
  • [25] Measuring Renyi entanglement entropy with high efficiency and precision in quantum Monte Carlo simulations
    Zhao, Jiarui
    Chen, Bin-Bin
    Wang, Yan-Cheng
    Yan, Zheng
    Cheng, Meng
    Meng, Zi Yang
    NPJ QUANTUM MATERIALS, 2022, 7 (01)
  • [26] Renyi reflected entropy and entanglement wedge cross section with cosmic branes in AdS/BCFT
    Ahn, Byoungjoon
    Bak, Sang-Eon
    Kim, Keun-Young
    Nishida, Mitsuhiro
    arXiv,
  • [27] Entanglement Renyi Entropy of Two Disjoint Intervals for Large c Liouville Field Theory
    Tsujimura, Jun
    Nambu, Yasusada
    ENTROPY, 2022, 24 (12)
  • [28] Understanding the Generalization Ability of Deep Learning Algorithms: A Kernelized Renyi's Entropy Perspective
    Dong, Yuxin
    Gong, Tieliang
    Chen, Hong
    Li, Chen
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3642 - 3650
  • [29] GENERALIZATION OF A RESULT OF ERDOS AND RENYI
    KAPLAN, N
    JOURNAL OF APPLIED PROBABILITY, 1977, 14 (01) : 212 - 216
  • [30] Fractional Renyi entropy
    Tenreiro Machado, J. A.
    Lopes, Antonio M.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):