On Renyi Entropy Power Inequalities

被引:34
|
作者
Ram, Eshed [1 ]
Sason, Igal [1 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect Engn, IL-32000 Haifa, Israel
关键词
Renyi entropy; entropy power inequality; Renyi entropy power; YOUNGS-INEQUALITY; INFORMATION; CONVERSE; MONOTONICITY;
D O I
10.1109/TIT.2016.2616135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives improved Renyi entropy power inequalities (R-EPIs). Consider a sum S-n = Sigma(n)(k=1) x(k)of n independent continuous random vectors taking values on R-d, and let alpha epsilon [1, infinity]. An R-EPI provides a lower bound on the order-a Renyi entropy power of S-n, that, up to a multiplicative constant (which may depend in general on n, alpha, d), is equal to the sum of the order-alpha Renyi entropy powers of the n random vectors {X-k}(k=1)(n). For alpha = 1, the R-EPI coincides with the wellknown entropy power inequality by Shannon. The first improved R-EPI is obtained by tightening the recent R-EPI by Bobkov and Chistyakov, which relies on the sharpened Young's inequality. A further improvement of the R-EPI also relies on convex optimization and results on rank-one modification of a real valued diagonal matrix.
引用
收藏
页码:6800 / 6815
页数:16
相关论文
共 50 条
  • [1] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293
  • [2] Infinity-Renyi Entropy Power Inequalities
    Xu, Peng
    Melbourne, James
    Madiman, Mokshay
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [3] Renyi Entropy Power Inequalities via Normal Transport and Rotation
    Rioul, Olivier
    [J]. ENTROPY, 2018, 20 (09)
  • [4] Renyi Entropy Power Inequalities for s-concave Densities
    Li, Jiange
    Marsiglietti, Arnaud
    Melbourne, James
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2224 - 2228
  • [5] Bernoulli sums and Renyi entropy inequalities
    Madiman, Mokshay
    Melbourne, James
    Roberto, Cyril
    [J]. BERNOULLI, 2023, 29 (02) : 1578 - 1599
  • [6] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [7] Quantum Renyi-2 entropy power inequalities for bosonic Gaussian operations
    Shin, Woochang
    Noh, Changsuk
    Park, Jiyong
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (08) : 1999 - 2006
  • [8] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693
  • [9] Renyi Entropy Power and Normal Transport
    Rioul, Olivier
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 1 - 5
  • [10] Majorization and Renyi entropy inequalities via Sperner theory
    Madiman, Mokshay
    Wang, Liyao
    Woo, Jae Oh
    [J]. DISCRETE MATHEMATICS, 2019, 342 (10) : 2911 - 2923