On Renyi Entropy Power Inequalities

被引:34
|
作者
Ram, Eshed [1 ]
Sason, Igal [1 ]
机构
[1] Technion Israel Inst Technol, Andrew & Erna Viterbi Fac Elect Engn, IL-32000 Haifa, Israel
关键词
Renyi entropy; entropy power inequality; Renyi entropy power; YOUNGS-INEQUALITY; INFORMATION; CONVERSE; MONOTONICITY;
D O I
10.1109/TIT.2016.2616135
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper gives improved Renyi entropy power inequalities (R-EPIs). Consider a sum S-n = Sigma(n)(k=1) x(k)of n independent continuous random vectors taking values on R-d, and let alpha epsilon [1, infinity]. An R-EPI provides a lower bound on the order-a Renyi entropy power of S-n, that, up to a multiplicative constant (which may depend in general on n, alpha, d), is equal to the sum of the order-alpha Renyi entropy powers of the n random vectors {X-k}(k=1)(n). For alpha = 1, the R-EPI coincides with the wellknown entropy power inequality by Shannon. The first improved R-EPI is obtained by tightening the recent R-EPI by Bobkov and Chistyakov, which relies on the sharpened Young's inequality. A further improvement of the R-EPI also relies on convex optimization and results on rank-one modification of a real valued diagonal matrix.
引用
收藏
页码:6800 / 6815
页数:16
相关论文
共 50 条
  • [41] Maximum Renyi entropy principle for systems with power-law Hamiltonians
    Bashkirov, AG
    [J]. PHYSICAL REVIEW LETTERS, 2004, 93 (13) : 130601 - 1
  • [42] A Novel Method for PD Feature Extraction of Power Cable with Renyi Entropy
    Chen, Jikai
    Dou, Yanhui
    Wang, Zhenhao
    Li, Guoqing
    [J]. ENTROPY, 2015, 17 (11): : 7698 - 7712
  • [43] Hirschman Uncertainty using Renyi, Instead of Shannon, Entropy is Invariant to the Renyi Entropy Order
    Ghuman, Kirandeep
    DeBrunner, Victor
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 825 - 829
  • [44] Renyi Entropy and Renyi Divergence in Sequential Effect Algebra
    Giski, Zahra Eslami
    [J]. OPEN SYSTEMS & INFORMATION DYNAMICS, 2020, 27 (02):
  • [45] Statistical inference for the ε-entropy and the quadratic Renyi entropy
    Leonenko, Nikolaj
    Seleznjev, Oleg
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 1981 - 1994
  • [46] Information Theoretic Proofs of Entropy Power Inequalities
    Rioul, Olivier
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (01) : 33 - 55
  • [47] Proof of entropy power inequalities via MMSE
    Guo, Dongning
    Shamai, Shlomo
    Verdu, Sergio
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 1011 - +
  • [48] Renyi entropy as a statistical entropy for complex systems
    A. G. Bashkirov
    [J]. Theoretical and Mathematical Physics, 2006, 149 : 1559 - 1573
  • [49] Two Remarks on Generalized Entropy Power Inequalities
    Madiman, Mokshay
    Nayar, Piotr
    Tkocz, Tomasz
    [J]. GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL II, 2020, 2266 : 169 - 185
  • [50] Relative Renyi Entropy for Atoms
    Nagy, A.
    Romera, E.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (11) : 2490 - 2494