Renyi Entropy Power Inequalities via Normal Transport and Rotation

被引:15
|
作者
Rioul, Olivier [1 ,2 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, LTCI, F-75013 Paris, France
[2] Univ Paris Saclay, Ecole Polytech, F-91128 Palaiseau, France
关键词
Renyi entropy; entropy power inequalities; transportation arguments; normal distributions; escort distributions; log-concave distributions;
D O I
10.3390/e20090641
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Following a recent proof of Shannon's entropy power inequality (EPI), a comprehensive framework for deriving various EPIs for the Renyi entropy is presented that uses transport arguments from normal densities and a change of variable by rotation. Simple arguments are given to recover the previously known Renyi EPIs and derive new ones, by unifying a multiplicative form with constant c and a modification with exponent alpha of previous works. In particular, for log-concave densities, we obtain a simple transportation proof of a sharp varentropy bound.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Renyi Entropy Power and Normal Transport
    Rioul, Olivier
    [J]. PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 1 - 5
  • [2] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293
  • [3] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (12) : 6800 - 6815
  • [4] Infinity-Renyi Entropy Power Inequalities
    Xu, Peng
    Melbourne, James
    Madiman, Mokshay
    [J]. 2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [5] Majorization and Renyi entropy inequalities via Sperner theory
    Madiman, Mokshay
    Wang, Liyao
    Woo, Jae Oh
    [J]. DISCRETE MATHEMATICS, 2019, 342 (10) : 2911 - 2923
  • [6] Renyi Entropy Power Inequalities for s-concave Densities
    Li, Jiange
    Marsiglietti, Arnaud
    Melbourne, James
    [J]. 2019 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2019, : 2224 - 2228
  • [7] Bernoulli sums and Renyi entropy inequalities
    Madiman, Mokshay
    Melbourne, James
    Roberto, Cyril
    [J]. BERNOULLI, 2023, 29 (02) : 1578 - 1599
  • [8] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [9] Quantum Renyi-2 entropy power inequalities for bosonic Gaussian operations
    Shin, Woochang
    Noh, Changsuk
    Park, Jiyong
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2023, 40 (08) : 1999 - 2006
  • [10] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693