On the Entropy Power Inequality for the Renyi Entropy of Order [0,1]

被引:18
|
作者
Marsiglietti, Arnaud [1 ]
Melbourne, James [2 ]
机构
[1] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[2] Univ Minnesota, Dept Elect & Comp Engn, Minneapolis, MN 55455 USA
关键词
Terms Entropy power inequality; Renyi entropy; log-concave; BRUNN-MINKOWSKI; SUM; MONOTONICITY; INFORMATION; CONVERSE;
D O I
10.1109/TIT.2018.2877741
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Using a sharp version of the reverse Young inequality, and a Renyi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Renyi entropy power inequalities for log-concave random vectors when Renyi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.
引用
收藏
页码:1387 / 1396
页数:10
相关论文
共 50 条
  • [1] A Renyi entropy power inequality for log-concave vectors and parameters in [0,1]
    Marsiglietti, Arnaud
    Melbourne, James
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1964 - 1968
  • [2] Entropy Power Inequality for the Renyi Entropy
    Bobkov, Sergey G.
    Chistyakov, Gennadiy P.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (02) : 708 - 714
  • [3] Renyi entropy power inequality and a reverse
    Li, Jiange
    [J]. STUDIA MATHEMATICA, 2018, 242 (03) : 303 - 319
  • [4] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. 2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2289 - 2293
  • [5] The Concavity of Renyi Entropy Power
    Savare, Giuseppe
    Toscani, Giuseppe
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (05) : 2687 - 2693
  • [6] On Renyi Entropy Power Inequalities
    Ram, Eshed
    Sason, Igal
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (12) : 6800 - 6815
  • [7] Proof of a Conjectured 0-Renyi Entropy Inequality With Applications to Multipartite Entanglement
    Song, Zhiwei
    Chen, Lin
    Sun, Yize
    Hu, Mengyao
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2385 - 2399
  • [8] Hirschman Uncertainty using Renyi, Instead of Shannon, Entropy is Invariant to the Renyi Entropy Order
    Ghuman, Kirandeep
    DeBrunner, Victor
    [J]. 2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 825 - 829
  • [9] Probing topological order with Renyi entropy
    Halasz, Gabor B.
    Hamma, Alioscia
    [J]. PHYSICAL REVIEW A, 2012, 86 (06):
  • [10] Renyi Entropy Properties of Order Statistics
    Abbasnejad, M.
    Arghami, N. R.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (01) : 40 - 52