A vectorial multifractal formalism

被引:0
|
作者
Peyrière, J [1 ]
机构
[1] Univ Paris 11, CNRS, UMR 8628, F-91405 Orsay, France
关键词
Hausdorff measure; Hausdorff dimension; packing measure; packing dimension; multifractal;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a formalism to perform the multifractal analysis of vector valued functions of balls in a metric space.
引用
收藏
页码:217 / 230
页数:14
相关论文
共 50 条
  • [31] Multifractal spectrum and thermodynamical formalism of the Farey tree
    Piacquadio, M
    Cesaratto, E
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (05): : 1331 - 1358
  • [32] A Multifractal Formalism for Hewitt-Stromberg Measures
    Attia, Najmeddine
    Selmi, Bilel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (01) : 825 - 862
  • [33] Application of the microcanonical multifractal formalism to monofractal systems
    Pont, Oriol
    Turiel, Antonio
    Perez-Vicente, Conrad J.
    [J]. PHYSICAL REVIEW E, 2006, 74 (06):
  • [34] Multifractal formalism for self-similar bridges
    Huillet, T
    Jannet, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (11): : 2567 - 2590
  • [35] Baire generic results for the anisotropic multifractal formalism
    Mourad Ben Slimane
    Hnia Ben Braiek
    [J]. Revista Matemática Complutense, 2016, 29 : 127 - 167
  • [36] A multifractal formalism for new general fractal measures
    Achour, Rim
    Li, Zhiming
    Selmi, Bilel
    Wang, Tingting
    [J]. CHAOS SOLITONS & FRACTALS, 2024, 181
  • [37] Vectorial formalism for analysis and design of polyphase synchronous machines
    Semail, E
    Bouscayrol, A
    Hautier, JP
    [J]. EUROPEAN PHYSICAL JOURNAL-APPLIED PHYSICS, 2003, 22 (03): : 207 - 220
  • [38] On multifractal formalism for self-similar measures with overlaps
    Julien Barral
    De-Jun Feng
    [J]. Mathematische Zeitschrift, 2021, 298 : 359 - 383
  • [39] The Multifractal Formalism for Measures, Review and Extension to Mixed Cases
    Mohamed Menceur
    Anouar Ben Mabrouk
    Kamel Betina
    [J]. Analysis in Theory and Applications, 2016, 32 (04) : 303 - 332
  • [40] The Short-Time Multifractal Formalism: Definition and Implement
    Xiong Gang
    Yang Xiaoniu
    Zhao Huichang
    [J]. ADVANCED INTELLIGENT COMPUTING THEORIES AND APPLICATIONS, PROCEEDINGS: WITH ASPECTS OF CONTEMPORARY INTELLIGENT COMPUTING TECHNIQUES, 2008, 15 : 541 - +