Multifractal spectrum and thermodynamical formalism of the Farey tree

被引:2
|
作者
Piacquadio, M [1 ]
Cesaratto, E [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina
来源
关键词
D O I
10.1142/S0218127401002754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Omega, mu) be a set of real numbers to which we associate a measure mu. Let alpha greater than or equal to 0, let Omega (alpha) = {chi is an element of Omega/alpha(chi) = alpha}, where alpha is the concentration index defined by Halsey et al. [1986]. Let f(H)(alpha) be the Hausdorff dimension of Omega (alpha). Let f(L)(alpha) be the Legendre spectrum of Omega, as defined in [Riedi & Mandelbrot, 1998]; and f(C)(alpha) the classical computational spectrum of Omega, defined in [Halsey et al., 1986]. The task of comparing fH, fe and fL for different measures mu was tackled by several authors [Cawley & Mauldin, 1992; Mandelbrot & Riedi, 1997; Riedi & Mandelbrot, 1998] working, mainly, on self-similar measures mu. The Farey tree partition in the unit segment induces a probability measure mu on an universal class of fractal sets Omega that occur in physics and other disciplines. This measure mu is the Hyperbolic measure mu (H), fundamentally different from any self-similar one. In this paper we compare f(H), f(C) and f(L) for mu (H).
引用
收藏
页码:1331 / 1358
页数:28
相关论文
共 50 条
  • [1] Multifractal spectrum of an experimental (video feedback) Farey tree
    Piacquadio, M.
    Rosen, M.
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (04) : 783 - 804
  • [2] Multifractal Spectrum of an Experimental (Video Feedback) Farey Tree
    M. Piacquadio
    M. Rosen
    [J]. Journal of Statistical Physics, 2007, 127 : 783 - 804
  • [3] Thermodynamical Formalism and Multifractal Analysis for Meromorphic Functions of Finite Order
    Mayer, Volker
    Urbanski, Mariusz
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 203 (954) : 1 - +
  • [4] MULTIFRACTAL ANALYSIS OF NEARLY CIRCULAR JULIA SET AND THERMODYNAMICAL FORMALISM
    COLLET, P
    DOBBERTIN, R
    MOUSSA, P
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1992, 56 (01): : 91 - 122
  • [5] A MULTIFRACTAL FORMALISM
    OLSEN, L
    [J]. ADVANCES IN MATHEMATICS, 1995, 116 (01) : 82 - 196
  • [6] GENERALIZED LEGENDRE TRANSFORM MULTIFRACTAL FORMALISM FOR NONCONCAVE SPECTRUM ESTIMATION
    Leonarduzzi, Roberto
    Touchette, Hugo
    Wendt, Herwig
    Abry, Patrice
    Jaffard, Stephane
    [J]. 2016 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2016,
  • [7] The calculus of thermodynamical formalism
    Giulietti, Paolo
    Kloeckner, Benoit R.
    Lopes, Artur O.
    Marcon, Diego
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (10) : 2357 - 2412
  • [8] NOTE ON THE MULTIFRACTAL FORMALISM OF COVERING NUMBER ON THE GALTON-WATSON TREE
    Attia, Najmedine
    Khalifa, Meriem ben hadj
    [J]. KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 49 (01): : 43 - 60
  • [9] A property of Farey tree
    Kocic, L
    Stefanovska, L
    [J]. NUMERICAL ANALYSIS AND ITS APPLICATIONS, 2005, 3401 : 345 - 351
  • [10] ON THE INVERSE MULTIFRACTAL FORMALISM
    Olsen, L.
    [J]. GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 179 - 194