Multifractal spectrum and thermodynamical formalism of the Farey tree

被引:2
|
作者
Piacquadio, M [1 ]
Cesaratto, E [1 ]
机构
[1] Univ Buenos Aires, Dept Matemat, Fac Ingn, RA-1063 Buenos Aires, DF, Argentina
来源
关键词
D O I
10.1142/S0218127401002754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (Omega, mu) be a set of real numbers to which we associate a measure mu. Let alpha greater than or equal to 0, let Omega (alpha) = {chi is an element of Omega/alpha(chi) = alpha}, where alpha is the concentration index defined by Halsey et al. [1986]. Let f(H)(alpha) be the Hausdorff dimension of Omega (alpha). Let f(L)(alpha) be the Legendre spectrum of Omega, as defined in [Riedi & Mandelbrot, 1998]; and f(C)(alpha) the classical computational spectrum of Omega, defined in [Halsey et al., 1986]. The task of comparing fH, fe and fL for different measures mu was tackled by several authors [Cawley & Mauldin, 1992; Mandelbrot & Riedi, 1997; Riedi & Mandelbrot, 1998] working, mainly, on self-similar measures mu. The Farey tree partition in the unit segment induces a probability measure mu on an universal class of fractal sets Omega that occur in physics and other disciplines. This measure mu is the Hyperbolic measure mu (H), fundamentally different from any self-similar one. In this paper we compare f(H), f(C) and f(L) for mu (H).
引用
收藏
页码:1331 / 1358
页数:28
相关论文
共 50 条
  • [21] On the wavelet formalism for multifractal analysis
    Murguía, JS
    Urías, J
    [J]. CHAOS, 2001, 11 (04) : 858 - 863
  • [22] A higher order multifractal formalism
    Ben Mabrouk, Anouar
    [J]. STATISTICS & PROBABILITY LETTERS, 2008, 78 (12) : 1412 - 1421
  • [23] Generic validity of the multifractal formalism
    Fraysse, A.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) : 593 - 607
  • [24] A relative vectorial multifractal formalism
    Mahjoub, Amal
    Attia, Najmeddine
    [J]. CHAOS SOLITONS & FRACTALS, 2022, 160
  • [25] A multifractal formalism in a probability space
    Li, YL
    Dai, CS
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (01) : 57 - 73
  • [26] On the spectrum of Farey and Gauss maps
    Isola, S
    [J]. NONLINEARITY, 2002, 15 (05) : 1521 - 1539
  • [27] A thermodynamical formalism describing mechanical interactions
    Andrade, R. F. S.
    Souza, A. M. C.
    Curado, E. M. F.
    Nobre, F. D.
    [J]. EPL, 2014, 108 (02)
  • [28] Fraction interpolation walking a Farey tree
    Mosko, M
    Garcia-Luna-Aceves, JJ
    [J]. INFORMATION PROCESSING LETTERS, 2006, 98 (01) : 19 - 23
  • [29] Random variables associated with the Farey tree
    Golubeva E.P.
    [J]. Journal of Mathematical Sciences, 2013, 193 (1) : 32 - 39
  • [30] The validity of the multifractal formalism: Results and examples
    Ben Nasr, F
    Bhouri, I
    Heurteaux, Y
    [J]. ADVANCES IN MATHEMATICS, 2002, 165 (02) : 264 - 284